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Abstract

This paper attempts to provide some insight into the nature of radio propagation in that part of the
spectrum (upper VHF to microwave) used by experimenters for high-speed digital transmission.  It begins
with the basics of free space path loss calculations, and then considers the effects of refraction, diffraction
and reflections on the path loss of Line of Sight (LOS) links.  The nature of non-LOS radio links is then
examined, and propagation effects other than path loss which are important in digital transmission are
also described.

Introduction

The nature of packet radio is changing.  As access to the Internet becomes cheaper and faster, and the
applications offered on the “net” more and more enticing, interest in the amateur packet radio network
which grew up in the 1980s steadily wanes.  To be sure, there are still pockets of interest in some places,
particularly where some infrastructure to support speeds of 9600 bps or more has been built up, but this
has not reversed the trend of declining interest and participation.  Nevertheless, there is still lots of
interest in packet radio out there - it is simply becoming re-focused in different areas.  Some applications
which do not require high speed, and can take advantage of the mobility that packet radio can provide,
have found a secure niche - APRS is a good example.  Interest is also high in high-speed wireless
transmission which can match, or preferably exceed, landline modem rates.  With a wireless link, you can
have a 24-hour network connection without the need for a dedicated line, and you may also have the
possibility of portable or mobile operation.  Until recently, most people have considered it to be just too
difficult to do high-speed digital.  For example, the WA4DSY 56 Kbps RF modem has been available for
ten years now, and yet only a few hundred people at most have put one on the air.  With the new version
of the modem introduced last year, 56 Kbps packet radio has edged closer to plug ‘n play, but in the
meantime, landline modem data rates have moved into the same territory.  What has really sparked
interest in high-speed packet radio lately is not the amateur packet equipment, but the boom in spread
spectrum (SS) wireless LAN (WLAN) hardware which can be used without a licence in some of the ISM
bands.  The new WLAN units are typically integrated radio/modem/computer interfaces which mimic
either ethernet interfaces or landline modems, and are just as easy to set up.  Many of them offer speeds
which landline modem users can only dream of.  TAPR and others are working on bringing this type of
SS technology into the amateur service, where it can be used on different bands, and without the
Effective Radiated Power (ERP) restrictions which exist for the unlicenced service.  This technology will
be the ticket to developing high-speed wireless LANs and MANs which, using the Internet as a
backbone, could finally realize the dream of a high-performance wide-area AMPRnet which can support



the applications (WWW, audio and video conferencing, etc.) that get people excited about computer
networking these days.

Although the dream as stated above is somewhat controversial, the author believes it represents the best
hope of attracting new people to the hobby, providing a basis for experimentation and training in state-of-
the-art wireless techniques and networking, and, ultimately, retaining spectrum for the amateur radio
service.  One problem is that most of the people attracted to using digital wireless techniques have little
or no background in RF.  When it comes to setting up wireless links which will work over some distance,
they tend to lack the necessary knowledge about antennas, transmission lines and, especially, the
subtleties of radio propagation.  This paper deals with the latter area, in the hopes of providing this new
crop of digital experimenters with some tools to help them build wireless links which work.

The main emphasis of this paper is on predicting the path loss of a link, so that one can approach the
installation of the antennas and other RF equipment with some degree of confidence that the link will
work.  The focus is on acquiring a feel for radio propagation, and pointing the way towards recognizing
the alternatives that may exist and the instances in which experimentation may be fruitful.  We’ll also look
at some propagation aspects which are of particular relevance to digital signaling.

Estimating Path Loss

The fundamental aim of a radio link is to deliver sufficient signal power to the receiver at the far end of
the link to achieve some performance objective.  For a data transmission system, this objective is usually
specified as a minimum bit error rate (BER).  In the receiver demodulator, the BER is a function of the
signal to noise ratio (SNR).  At the frequencies under consideration here, the noise power is often
dominated by the internal receiver noise; however, this is not always the case, especially at the lower
(VHF) end of the range.  In addition, the “noise” may also include significant power from interfering
signals, necessitating the delivery of higher signal power to the receiver than would be the case under
more ideal circumstances (i.e., back-to-back through an attenuator).  If the channel contains multipath,
this may also have a major impact on the BER.  We will consider multipath in more detail later - for now,
we will focus on predicting the signal power which will be available to the receiver.

Free Space Propagation

The benchmark by which we measure the loss in a transmission link is the loss that would be expected in
free space - in other words, the loss that would occur in a region which is free of all objects that might
absorb or reflect radio energy.  This represents the ideal case which we hope to approach in our real
world radio link (in fact, it is possible to have path loss which is less than the “free space” case, as we
shall see later, but it is far more common to fall short of this goal).

Calculating free space transmission loss is quite simple.  Consider a transmitter with power Pt coupled to
an antenna which radiates equally in all directions (everyone’s favorite mythical antenna, the isotropic
antenna).  At a distance d from the transmitter, the radiated power is distributed uniformly over an area of
4πd2 (i.e. the surface area of a sphere of radius d), so that the power flux density is:
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The transmission loss then depends on how much of this power is captured by the receiving antenna.  If
the capture area, or effective aperture of this antenna is Ar, then the power which can be delivered to the
receiver (assuming no mismatch or feedline losses) is simply

P sAr r= (2)

For the hypothetical isotropic receiving antenna, we have
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Combining equations (1) and (3) into (2), we have
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The free space path loss between isotropic antennas is Pt /  Pr.  Since we usually are dealing with
frequency rather than wavelength, we can make the substitution λ = c/f to get
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This shows the classic square-law dependence of signal level versus distance.  What troubles some people
when they see this equation is that the path loss also increases as the square of the frequency.  Does this
mean that the transmission medium is inherently more lossy at higher frequencies?  While it is true that
absorption of RF by various materials (buildings, trees, water vapor, etc.) tends to increase with
frequency, remember we are talking about “free space” here.  The frequency dependence in this case is
solely due to the decreasing effective aperture of the receiving antenna as the frequency increases.  This is
intuitively reasonable, since the physical size of a given antenna type is inversely proportional to
frequency.  If we double the frequency, the linear dimensions of the antenna decrease by a factor of one-
half, and the capture area by a factor of one-quarter.  The antenna therefore captures only one-quarter of
the power flux density at the higher frequency versus the lower one, and delivers 6 dB less signal to the
receiver.  However, in most cases we can easily get this 6 dB back by increasing the effective aperture,
and hence the gain, of the receiving antenna.  For example, suppose we are using a parabolic dish antenna
at the lower frequency.  When we double the frequency, instead of allowing the dish to be scaled down in
size so as to produce the same gain as before, we can maintain the same reflector size.  This gives us the
same effective aperture as before (assuming that the feed is properly redesigned for the new frequency,
etc.), and 6 dB more gain (remembering that the gain is with respect to an isotropic or dipole reference
antenna at the same frequency).  Thus the free space path loss is now the same at both frequencies;
moreover, if we maintained the same physical aperture at both ends of the link, we would actually have 6
dB less path loss at the higher frequency.  You can picture this in terms of being able to focus the energy
more tightly at the frequency with the shorter wavelength.  It has the added benefit of providing greater
discrimination against multipath - more about this later.



The free space path loss equation is more usefully expressed logarithmically:

L f d dBp = + +32 4 20 20. log log  (f in MHz, d in km) (6a)

or

L f d dBp = + +36 6 20 20. log log   (f in MHz, d in miles) (6b)

This shows more clearly the relationship between path loss and distance: path loss increases by 20
dB/decade or 6 dB/octave, so each time you double the distance, you lose another 6 dB of signal under
free space conditions.

Of course, in looking at a real system, we must consider the actual antenna gains and cable losses in
calculating the signal power Pr which is available at the receiver input:

P P L G G L Lr t p t r t r= − + + − − (7)

where Pt = transmitter power output (dBm or dBW, same units as Pr)
Lp = free space path loss between isotropic antennas (dB)
Gt = transmit antenna gain (dBi)
Gr = receive antenna gain (dBi)
Lt = transmission line loss between transmitter and transmit antenna (dB)
Lr = transmission line loss between receive antenna and receiver input (dB)

A table of transmission line losses for various bands and popular cable types can be found in the
Appendix.

Example 1.  Suppose you have a pair of 915 MHz WaveLAN cards, and want to use them on a 10 km
link on which you believe free space path loss conditions will apply.  The transmitter power is 0.25 W, or
+24 dBm.  You also have a pair of yagi antennas with 10 dBi gain, and at each end of the link, you need
about 50 ft (15 m) of transmission line to the antenna.  Let’s say you’re using LMR-400 coaxial cable,
which will give you about 2 dB loss at 915 MHz for each run.  Finally, the path loss from equation (6a) is
calculated, and this gives 111.6 dB, which we’ll round off to 112 dB.  The expected signal power at the
receiver is then, from (7):

P dBmr = − + + − − = −24 112 10 10 2 2 72

According to the WaveLAN specifications, the receivers require -78 dBm signal level in order to deliver a
low bit error rate (BER).  So, we should be in good shape, as we have 6 dB of margin over the minimum
requirement.  However, this will only be true if the path really is equivalent to the free space case, and
this is a big if!  We’ll look at means of predicting whether the free space assumption holds in the next
section.



Path Loss on Line of Sight Links

The term Line of Sight (LOS) as applied to radio links has a pretty obvious meaning: the antennas at the
ends of the link can “see” each other, at least in a radio sense.  In many cases, radio LOS equates to
optical LOS: you’re at the location of the antenna at one end of the link, and with the unaided eye or
binoculars, you can see the antenna (or its future site) at the other end of the link.  In other cases, we may
still have an LOS path even though we can’t see the other end visually.  This is because the radio horizon
extends beyond the optical horizon.  Radio waves follow slightly curved paths in the atmosphere, but if
there is a direct path between the antennas which doesn’t pass through any obstacles, then we still have
radio LOS.  Does having LOS mean that the path loss will be equal to the free space case which we have
just considered?  In some cases, the answer is yes, but it is definitely not a sure thing.  There are three
mechanisms which may cause the path loss to differ from the free space case:

• refraction in the earth’s atmosphere, which alters the trajectory of radio waves, and which can change
with time.

 
• diffraction effects resulting from objects near the direct path.
 
• reflections from objects, which may be either near or far from the direct path.

We examine these mechanisms in the next three sections.

Atmospheric Refraction

As mentioned previously, radio waves near the earth’s surface do not usually propagate in precisely
straight lines, but follow slightly curved paths.  The reason is well-known to VHF/UHF DXers: refraction
in the earth’s atmosphere.  Under normal circumstances, the index of refraction decreases monotonically
with increasing height, which causes the radio waves emanating from the transmitter to bend slightly
downwards towards the earth’s surface instead of following a straight line.  The effect is more
pronounced at radio frequencies than at the wavelength of visible light, and the result is that the radio
waves can propagate beyond the optical horizon, with no additional loss other than the free space
distance loss.  There is a convenient artifice which is used to account for this phenomenon: when the path
profile is plotted, we reduce the curvature of the earth’s surface.  If we choose the curvature properly, the
paths of the radio waves can be plotted as straight lines.  Under normal conditions, the gradient in
refractivity index is such that real world propagation is equivalent to straight-line propagation over an
earth whose radius is greater than the real one by a factor of 4/3 - thus the often-heard term “4/3 earth
radius” in discussions of terrestrial propagation.  However, this is just an approximation that applies
under typical conditions - as VHF/UHF experimenters well know, unusual weather conditions can change
the refractivity profile dramatically.  This can lead to several different conditions.  In superrefraction, the
rays bend more than normal and the radio horizon is extended; in extreme cases, it leads to the
phenomenon known as ducting, where the signal can propagate over enormous distances beyond the
normal horizon.  This is exciting for DXers, but of little practical use for people who want to run data
links.  The main consequence for digital experimenters is that they may occasionally experience
interference from unexpected sources.  A more serious concern is subrefraction, in which the bending of
the rays is less than normal, thus shortening the radio horizon and reducing the clearance over obstacles
along the path.  This may lead to increased path loss, and possibly even an outage.  In commercial radio
link planning, the statistical probability of these events is calculated and allowed for in the link design



(distance, path clearance, fading margin, etc.).  We won’t get into all of the details here; suffice it to say
that reliability of your link will tend to be higher if you back off the distance from the maximum which is
dictated by the normal radio horizon.  Not that you shouldn’t try and stretch the limits when the need
arises, but a link which has optical clearance is preferable to one which doesn’t.  It’s also a good idea to
build in some margin to allow for fading due to unusual propagation situations, and to allow as much
clearance from obstacles along the path as possible.  For short-range links, the effects of refraction can
usually be ignored.

Diffraction and Fresnel Zones

Refraction and reflection of radio waves are mechanisms which are fairly easy to picture, but diffraction is
much less intuitive.  To understand diffraction, and radio propagation in general, it is very helpful to have
some feeling for how radio waves behave in an environment which is not strictly “free space”.  Consider
Fig. 1, in which a wavefront is traveling from left to right, and encountering an obstacle which absorbs or
reflects all of the incident radio energy.  Assume that the incident wavefront is uniform; i.e., if we
measure the field strength along the line A-A’, it is the same at all points.  Now, what will be the field
strength along a line B-B’ on the other side of the obstacle?  To quantify this, we provide an axis in which
zero coincides with the top of the obstacle, and  negative and positive numbers denote positions above
and below this, respectively (we’ll define the parameter ν used on this axis a bit later).

Figure 1  Shadowing of Radio Waves by an Object



Intuition may lead one to expect the field strength along B-B’ to look like the dashed line in Fig. 2, with
complete shadowing and zero signal below the top of the obstacle, and no effect at all above it.  The solid
line shows the reality: not only does energy “leak” into the shadowed area, but the field strength above
the top of the obstacle is also disturbed.  At a position which is level with the top of the obstacle, the
signal power density is down by some 6 dB, despite the fact that this point is in “line of sight” of the
source.  This effect is less surprising when one considers other familiar instances of wave motion.
Picture, for example, tossing a rock in a pond and watching the ripples propagate outward.  When they
encounter an object such as a boat or a pier, you will see that the water behind the object is also
disturbed, and that the waves traveling past, but close to, the object are also affected somewhat.
Similarly, consider a distant source of sound waves: if the sound level is well above the ambient level,
then moving behind an object which absorbs the incident sound energy completely does not result in the
sound disappearing completely - it is still audible at a lower level, due to diffraction (as an aside, it is
interesting to note that the wavelength of a 1 KHz sound wave is nearly the same as a 1 GHz radio
wave).  So much for analogies - let’s get back to radio waves.

The explanation for the non-intuitive behavior of radio waves in the presence of obstacles which appear in
their path is found in something called Huygens’ Principle.  Huygens showed that propagation occurs as
follows: each point on a wavefront acts as a source of a secondary wavefront known as a wavelet, and a
new wavefront is then built up from the combination of the contributions from all of the wavelets on the
preceding wavefront.  The secondary wavelets do not radiate equally in all directions - their amplitude in

Figure 2  Signal Levels on the Far Side of the Shadowing Object



a given direction is proportional to (1 + cos α), where α is the angle between that direction and the
direction of propagation of the wavefront.  The amplitude is therefore maximum in the direction of
propagation (i.e., normal to the wavefront), and zero in the reverse direction.  The representation of a
wavefront as a collection of wavelets is shown in Fig. 3.

At a given point on the new wavefront (point B), the signal vector (phasor) is determined by vector
addition of the contributions from the wavelets on the preceding wavefront, as shown in Fig. 4.  The
largest component is from the nearest wavelet, and we then get symmetrical contributions from the points
above and below it.  These latter vectors are shorter, due to the angular reduction of amplitude

Figure 3  Representation of Radio Waves as Wavelets

Figure 4  Building of a New Wavefront by Vector Summation



mentioned above, and also the greater distance traveled.  The greater distance also introduces more time
delay, and hence the rotation of the vectors as shown in the figure.  As we include contributions from
points farther and farther away, the corresponding vectors continue to rotate and diminish in length, and
they trace out a double-sided spiral path, known as the Cornu spiral.

The Cornu spiral, shown in Fig. 5, provides the tool we need to visualize what happens when radio waves
encounter an obstacle.  In free space, at every point on a new wavefront, all contributions from the
wavelets on the preceding wavefront are present and unattenuated, so the resultant vector corresponds to
the complete spiral (i.e., the endpoints of the vector are X and Y).  Now, consider again the situation
shown in Fig. 1, and for each location on the wavefront B-B’, visualize the makeup of the Cornu spiral
(note that the top of the obstacle is assumed to be sufficiently narrow that no significant reflections can
occur from it).  At position 0, level with the top of the obstacle, we will have only contributions from the
positive half of the preceding wavefront at A-A’, since all of the others are blocked by the obstacle.
Therefore, the received components form only the upper half of the spiral, and the resultant vector is
exactly half the length of the free space case, corresponding to a 6 dB reduction in amplitude.  As we go
lower on the line B-B’, we start to get blockage of components from the positive side of the A-A’
wavefront, removing more and more of the vectors as we go, and leaving only the tight upper spiral.  The
resulting amplitude diminishes monotonically towards zero as we move down the new wavefront, but
there is still signal present at all points behind the obstacle, as shown in the graph in Fig. 2.  How about
the points along line B-B’ above the obstacle, where the graph shows those mysterious ripples?  Again,
look at the Cornu spiral: as we move up the line, we begin to add contributions from the negative side of
the A-A’ wavefront (vectors -1, -2, etc.).  Note what happens to the resultant vector - as we make the
first turn around the bottom of the spiral, it reaches its maximum length, corresponding to the highest

Figure 5  The Cornu Spiral



peak in the graph of Fig. 2.  As we continue to move up B-B’ and add more components, we swing
around the spiral and reach the minimum length for the resultant vector (minimum distance from point
Y).  Further progression up B-B’ results in further motion around the spiral, and the amplitude of the
resultant oscillates back and forth, with the amplitude of the oscillation steadily decreasing as the
resultant converges on the free space value, given by the complete Cornu spiral (vector X-Y).

So, in a nutshell, to visualize what happens to radio waves when they encounter an obstacle, we have to
develop a picture of the wavefront after the obstacle as a function of the wavefront just before it (as
opposed to simply tracing rays from the distant source).  Now we’re in a position to talk about Fresnel
zones.  A Fresnel zone is a simpler concept once you have some understanding of diffraction: it is the
volume of space enclosed by an ellipsoid which has the two antennas at the ends of a radio link at its foci.
The two-dimensional representation of a Fresnel zone is shown in Fig. 6.  The surface of the ellipsoid is
defined by the path ACB, which exceeds the length of the direct path AB by some fixed amount.  This
amount is nλ/2, where n is a positive integer.  For the first Fresnel zone, n = 1 and the path length differs
by λ/2 (i.e., a 180° phase reversal with respect to the direct path).  For most practical purposes, only the
first Fresnel zone need be considered.  A radio path has first Fresnel zone clearance if, as shown in Fig.
6, no objects capable of causing significant diffraction penetrate the corresponding ellipsoid.  What does
this mean in terms of path loss?  Recall how we constructed the wavefront behind an object by vector
addition of the wavelets comprising the wavefront in front of the object, and apply this to the case where
we have exactly first Fresnel zone clearance.  We wish to find the strength of the direct path signal after it
passes the object.  Assuming there is only one such object near the Fresnel zone, we can look at the
resultant wavefront at the destination point B.  In terms of the Cornu spiral, the upper half of the spiral is
intact, but part of the lower half is absent, due to blockage by the object.  Since we have exactly first
Fresnel clearance, the final vector which we add to the bottom of the spiral is 180° out of phase with the
direct-path vector - i.e., it is pointing downwards.  This means that we have passed the bottom of the
spiral and are on the way back up, and the resultant vector is near the free space magnitude (a line
between X and Y in Fig. 5).  In fact, it is sufficient to have 60% of the first Fresnel clearance, since this
will still give a resultant which is very close to the free space value.

In order to quantify diffraction losses, they are usually expressed in terms of a dimensionless parameter ν,
given by:

v
d

= 2
∆
λ

(8)

Figure 6  Fresnel Zone for a Radio Link



where ∆d is the difference in lengths of the straight-line path between the endpoints of the link and the
path which just touches the tip of the diffracting object (see Fig. 7, where ∆d = d1 + d2 - d).  By
convention, ν is positive when the direct path is blocked (i.e., the obstacle has positive height), and
negative when the direct path has some clearance (“negative height”).  When the direct path just grazes
the object, ν = 0.  This is the parameter shown in Figures 1 and 2.  Since in this section we are
considering LOS paths, this corresponds to specifying that ν ó 0.  For first Fresnel zone clearance, we
have ∆d = λ/2, so from equation (8), ν = -1.4.  From Fig. 2, we can see that this is more clearance than
necessary - in fact, we get slightly higher signal level (and path loss less than the free space value) if we
reduce the clearance to ν = -1, which corresponds to ∆d = λ/4.  The ν = -1 point is also shown on the
Cornu spiral in Fig. 5.  Since ∆d= λ/4, the last vector added to the summation is rotated 90° from the
direct-path vector, which brings us to the lowest point on the spiral.  The resultant vector then runs from
this point to the upper end of the spiral at point Y.  It’s easy to see that this vector is a bit longer than the
distance from X to Y, so we have a slight gain (about 1.2 dB) over the free space case.  We can also see
how we can back off to 60% of first Fresnel zone clearance (ν ≈ -0.85) without suffering significant loss.

But how do we calculate whether we have the required clearance?  The geometry for Fresnel zone
calculations is shown in Fig. 7.  Keep in mind that this is only a two-dimensional representation, but
Fresnel zones are three-dimensional.  The same considerations apply when the objects limiting path
clearance are to the side or even above the radio path.  Since we are considering LOS paths in this
section, we are dealing only with the “negative height” case, shown in the lower part of the figure.  We
will look at the case where h is positive later, when we consider non-LOS paths.

For first Fresnel zone clearance, the distance h from the nearest point of the obstacle to the direct path
must be at least

h
d d

d d
=

+
2 1 2

1 2

λ
(9)

where d1 and d2 are the distances from the tip of the obstacle to the two ends of the radio circuit.  This
formula is an approximation which is not valid very close to the endpoints of the circuit.  For
convenience, the clearance can be expressed in terms of frequency:
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where f is the frequency in GHz, d1 and d2 are in km, and h is in meters.  Or:
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(10b)

where f is in GHz, d1 and d2 in statute miles, and h is in feet.



Example 2.  We have a 10 km LOS path over which we wish to establish a link in the 915 MHz band.
The path profile indicates that the high point on the path is 3 km from one end, and the direct path clears
it by about 18 meters (60 ft.) - do we have adequate Fresnel zone clearance?  From equation (10a), with
d1 = 3 km, d2 = 7 km, and f = 0.915 GHz, we have h = 26.2 m for first Fresnel zone clearance (strictly
speaking, h = -26.2 m).  A clearance of 18 m is about 70% of this, so it is sufficient to allow negligible
diffraction loss.

Fresnel zone clearance may not seem all that important - after all, we said previously that for the zero
clearance (grazing) case, we have 6 dB of additional path loss.  If necessary, this could be overcome with,
for example, an additional 3 dB of antenna gain at each end of the circuit.  Now it’s time to confess that
the situation depicted in Figures 1 and 2 is a special case, known as “knife edge” diffraction.  Basically,
this means that the top of the obstacle is small in terms of wavelengths.  This is sometimes a reasonable
approximation of an object in the real world, but more often than not, the obstacle will be rounded (such
as a hilltop) or have a large flat surface (like the top of a building), or otherwise depart from the knife
edge assumption.  In such cases, the path loss for the grazing case can be considerably more than 6 dB -
in fact, 20 dB would be a better estimate in many cases.  So, Fresnel zone clearance can be pretty
important on real-world paths.  And, again, keep in mind that the Fresnel zone is three-dimensional, so
clearance must also be maintained from the sides of buildings, etc. if path loss is to be minimized.
Another point to consider is the effect on Fresnel zone clearance of changes in atmospheric refraction, as
discussed in the last section.  We may have adequate clearance on a longer path under normal conditions
(i.e., 4/3 earth radius), but lose the clearance when unusual refraction conditions prevail.  On longer
paths, therefore, it is common in commercial radio links to do the Fresnel zone analysis on something

Figure 7  Fresnel Zone Geometry



close to “worst case” rather than typical refraction conditions, but this may be less of a concern in
amateur applications.

Most of the material in this section was based on Ref. [2], which is highly recommended for further
reading.

Ground Reflections

An LOS path may have adequate Fresnel zone clearance, and yet still have a path loss which differs
significantly from free space under normal refraction conditions.  If this is the case, the cause is probably
multipath propagation resulting from reflections (multipath also poses particular problems for digital
transmission systems - we’ll look at this a bit later, but here we are only considering path loss).

One common source of reflections is the ground.  It tends to be more of a factor on paths in rural areas;
in urban settings, the ground reflection path will often be blocked by the clutter of buildings, trees, etc.  In
paths over relatively smooth ground or bodies of water, however, ground reflections can be a major
determinant of path loss.  For any radio link, it is worthwhile to look at the path profile and see if the
ground reflection has the potential to be significant.  It should also be kept in mind that the reflection
point is not at the midpoint of the path unless the antennas are at the same height and the ground is not
sloped in the reflection region - just the remember the old maxim from optics that the angle of incidence
equals the angle of reflection.

Ground reflections can be good news or bad news, but are more often the latter.  In a radio path
consisting of a direct path plus a ground-reflected path, the path loss depends on the relative amplitude
and phase relationship of the signals propagated by the two paths.  In extreme cases, where the ground-
reflected path has Fresnel clearance and suffers little loss from the reflection itself (or attenuation from
trees, etc.), then its amplitude may approach that of the direct path.  Then, depending on the relative
phase shift of the two paths, we may have an enhancement of up to 6 dB over the direct path alone, or
cancellation resulting in additional path loss of 20 dB or more.  If you are acquainted with Mr. Murphy,
you know which to expect!  The difference in path lengths can be estimated from the path profile, and
then translated into wavelengths to give the phase relationship.  Then we have to account for the
reflection itself, and this is where things get interesting.  The amplitude and phase of the reflected wave
depend on a number of variables, including conductivity and permittivity of the reflecting surface,
frequency, angle of incidence, and polarization.

It is difficult to summarize the effects of all of the variables which affect ground reflections, but a typical
case is shown in Fig. 8 [2].  This particular figure is for typical ground conditions at 100 MHz, but the
same behavior is seen over a wide range of ground constants and frequencies.  Notice that there is a large
difference in reflection amplitudes between horizontal and vertical polarization (denoted on the curves
with “h” and “v”, respectively), and that vertical polarization in general gives rise to a much smaller
reflected wave.  However, the difference is large only for angles of incidence greater than a few degrees
(note that, unlike in optics, in radio transmission the angle of incidence is normally measured with respect
to a tangent to the reflecting surface rather than a normal to it); in practice, these angles will only occur
on very short paths, or paths with extraordinarily high antennas.  For typical paths, the angle of incidence
tends to be of the order of one degree or less - for example, for a 10 km path over smooth earth with 10
m antenna heights, the angle of incidence of the ground reflection would only be about 0.11 degrees.  In
such a case, both polarizations will give reflection amplitudes near unity (i.e., no reflection loss).  Perhaps



more surprisingly, there will also be a phase reversal in both cases.  Horizontally-polarized waves always
undergo a phase reversal upon reflection, but for vertically-polarized waves, the phase change is a
function of the angle of incidence and the ground characteristics.

The upshot of all this is that for most paths in which the ground reflection is significant (and no other
reflections are present), there will be very little difference in performance between horizontal and vertical
polarization.  For very short paths, horizontal polarization will generally give rise to a stronger reflection.
If it turns out that this causes cancellation rather than enhancement, switching to vertical polarization may
provide a solution.  In other words, for shorter paths, it is usually worthwhile to try both polarizations to
see which works better (of course, other factors such as mounting constraints and rejection of other
sources of multipath and interference also enter into the choice of polarization).

As stated above, for either polarization, as the path gets longer we approach the case where the ground
reflection produces a phase reversal and very little attenuation.  At the same time, the direct and reflected
paths are becoming more nearly equal.  The path loss ripples up and down as we increase the distance,
until we reach the point where the path lengths differ by just one-half wavelength.  Combined with the
180° phase shift caused by the ground reflection, this brings the direct and reflected signals into phase,
resulting in an enhancement over the free space path loss (theoretically 6 dB, but this will seldom be
realized in practice).  Thereafter, it’s all downhill as the distance is further increased, since phase
difference between the two paths approaches in the limit the 180° phase shift of the ground reflection.  It
can be shown that, in this region, the received power follows an inverse fourth-power law as a function of

Figure 8  Typical Ground Reflection Parameters



distance instead of the usual square law (i.e., 12 dB more attenuation when you double the distance,
instead of 6 dB).  The distance at which the path loss starts to increase at the fourth-power rate is
reached when the ellipsoid corresponding to the first Fresnel zone just touches the ground.  A reasonably
good
estimate of this distance can be calculated from the equation

d
h h

=
4 1 2

λ
(11)

where h1 and h2 are the antenna heights above the ground reflection point.  For example, for antenna
heights of 10 m, at 915 MHz (λ = 33 cm) we will be into the fourth-law loss region for links longer than
about 1.2 km.

So, for longer-range paths, ground reflections are always bad news.  Serious problems with ground
reflections are most commonly encountered with radio links across bodies of water.  Spread spectrum
techniques and diversity antenna arrangements usually can’t overcome the problems - the solution lies in
siting the antennas (e.g., away from the shore of the body of water) such that the reflected path is cut off
by natural obstacles, while the direct path is unimpaired.  In other cases, it may be possible to adjust the
antenna locations so as to move the reflection point to a rough area of land which scatters the signal
rather than creating a strong specular reflection.

Other Sources of Reflections

Much of what has been said about ground reflections applies to reflections from other objects as well.
The “ground reflection” on a particular path may be from a building rooftop rather than the ground itself,
but the effect is much the same.  On long links, reflections from objects near the line of the direct path
will almost always cause increased path loss - in essence, you have a permanent “flat fade” over a very
wide bandwidth.  Reflections from objects which are well off to the side of the direct path are a different
story, however.  This is a frequent occurrence in urban areas, where the sides of buildings can cause
strong reflections.  In such cases, the angle of incidence may be much larger than zero, unlike the ground
reflection case.  This means that horizontal and vertical polarization may behave quite differently - as we
saw in Fig. 8, vertically polarized signals tend to produce lower-amplitude reflections than horizontally
polarized signals when the angle of incidence exceeds a few degrees.  When the reflecting surface is
vertical, like the side of a building, a signal which is transmitted with horizontal polarization effectively
has vertical polarization as far as the reflection is concerned.  Therefore, horizontal polarization will
generally result in weaker reflections and less multipath than vertical polarization in these cases.

Effects of Rain, Snow and Fog

The loss of LOS paths may sometimes be affected by weather conditions (other than the refraction effects
which have already been mentioned).  Rain and fog (clouds) become a significant source of attenuation
only when we get well into the microwave region.  Attenuation from fog only becomes noticeable (i.e.,
attenuation of the order of 1 dB or more) above about 30 GHz.  Snow is in this category as well.  Rain
attenuation becomes significant at around 10 GHz, where a heavy rainfall may cause additional path loss
of the order of 1 dB/km.



Path Loss on Non-Line of Sight Paths

We have spent quite a bit of time looking at LOS paths, and described the mechanisms which often cause
them to have path loss which differs from the “free space” assumption.  We’ve seen that the path loss
isn’t always easy to predict.  When we have a path which is not LOS, it becomes even more difficult to
predict how well signals will propagate over it.  Unfortunately, non-LOS situations are sometimes
unavoidable, particularly in urban areas.  The following sections deal with some of the major factors
which must be considered.

Diffraction Losses

In some special cases, such as diffraction over a single obstacle which can be modeled as a knife edge, the
loss of a non-LOS path can be predicted fairly readily.  In fact, this is the same situation that we saw in
Figures 1 and 2, with the diffraction parameter ν > 0.  This parameter, from equation (8), is

v
d

= 2
∆
λ

To get ∆d, measure the straight-line distance between the endpoints of the link.  Then measure the length
of the actual path, which includes the two endpoints and the tip of the knife edge, and take the difference
between the two.  The geometry is shown in Fig. 7(a), the “positive h” case.  A good approximation to
the knife-edge diffraction loss in dB can then be calculated from

( ) [ ]L v v v= + + +69 20 12. log (12)

Example 3.  We want to run a 915 MHz link between two points which are a straight-line distance of 25
km apart.  However, 5 km from one end of the link, there is a ridge which is 100 meters higher than the
two endpoints.  Assuming that the ridge can be modeled as a knife edge, and that the paths from the
endpoints to the top of ridge are LOS with adequate Fresnel zone clearance, what is the expected path
loss?  From simple geometry, we find that length of the path over the ridge is 25,001.25 meters, so that
∆d = 1.25 m.  Since λ = 0.33 m, the parameter ν, from (8), is 3.89.  Substituting this into (12), we find
that the expected diffraction loss is 24.9 dB.  The free space path loss for a 25 km path at 915 MHz is,
from equation (6a), 119.6 dB, so the total predicted path loss for this path is 144.5 dB.  This is too lossy
a path for many WLAN devices.  For example, suppose we are using WaveLAN cards with 13 dBi gain
antennas, which (disregarding feedline losses) brings them up to the maximum allowable EIRP of +36
dBm.  This will produce, at the antenna terminals at the other end of the link, a received power of (36 -
144.5 + 13) = -95.5 dBm.  This falls well short of the -78 dBm requirement of the WaveLAN cards.  On
the other hand, a lower-speed system may be quite usable over this path.  For instance, the FreeWave 115
Kbps modems require only about -108 dBm for reliable operation, which is a comfortable margin below
our predicted signal levels.

To see the effect of operating frequency on diffraction losses, we can repeat the calculation, this time
using 144 MHz, and find the predicted diffraction loss to be 17.5 dB, or 7.4 dB less than at 915 MHz.  At
2.4 GHz, the predicted loss is 29.0 dB, an increase of 4.1 dB over the 915 MHz case (these differences
are for the diffraction losses only, not the only total path loss).



Unfortunately, the paths which digital experimenters are faced with are seldom this simple.  They will
frequently involve diffraction over multiple rooftops or other obstacles, many of which don’t resemble
knife edges.  The path losses will generally be substantially greater in these cases than predicted by the
single knife edge model. The paths will also often pass through objects such as trees and wood-frame
buildings which are semi-transparent at radio frequencies.  Many models have been developed to try and
predict path losses in these more complex cases.  The most successful are those which deal with restricted
scenarios rather than trying to cover all of the possibilities.  One common scenario is diffraction over a
single obstacle which is too rounded to be considered a knife edge.  There are different ways of treating
this problem; the one described here is from Ref. [3].  The top of the object is modeled as a cylinder of
radius r, as shown in Fig. 9.  To calculate the loss, you need to plot the profile of the actual object, and
then draw straight lines from the link endpoints such that they just graze the highest part of the object as
seen from their individual perspectives.  Then the parameters Ds, d1, d2 and α are estimated, and an
estimate of the radius r can then be calculated from

r
D d d

d d
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(13)

Note that the angle α is measured in radians.  The procedure then is to calculate the knife edge diffraction
loss for this path as outlined above, and then add to it an excess loss factor Lex, calculated from

L
r

dBex = 117. α
π
λ

(14)

Figure 9  Diffraction by a Rounded Obstacle



There is also a correction factor for roughness: if the object is, for example, a hill which is tree-covered
rather than smooth at the top, the excess diffraction loss is said to be about 65% of that predicted in (14).
In general, smoother objects produce greater diffraction losses.

Example 4.  We revisit the scenario in Example 3, but let’s suppose that we’ve now decided that the
ridge blocking our path doesn’t cut it as a knife edge (ouch!).  From a plot of the profile, we estimate that
Ds = 10 meters.  As before, d1 = 20 km, d2 = 5 km and the height of the ridge is 100 meters.  Dusting off
our high school trigonometry, we can work out that α = 1.43°, or 0.025 radians.  Now, plugging these
numbers into (13), we get r = 188 meters.  Then, with λ = 0.33 m, we can calculate the excess loss from
(14):

L dBex = × ×
×

=117 0 025
188

0 33
12 4. .
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.

π

So, summed with the knife edge loss calculated previously, we have an estimated total diffraction loss of
37.3 dB (assuming the ridge is “smooth” rather than “rough”).  This is a lot, but you can easily imagine
scenarios where the losses are much greater: just look at the direct dependence on the angle α in (14) and
picture from Fig. 9 what happens when the obstacle is closer to one of the link endpoints.  Amateurs
doing weak signal work are accustomed to dealing with large path losses in non-LOS propagation, but
such losses are usually intolerable in high-speed digital links.

Attenuation from Trees and Forests

Trees can be a significant source of path loss, and there are a number of variables involved, such as the
specific type of tree, whether it is wet or dry, and in the case of deciduous trees, whether the leaves are
present or not.  Isolated trees are not usually a major problem, but a dense forest is another story.  The
attenuation depends on the distance the signal must penetrate through the forest, and it increases with
frequency.  According to a CCIR report [10], the attenuation is of the order of 0.05 dB/m at 200 MHz,
0.1 dB/m at 500 MHz, 0.2 dB/m at 1 GHz, 0.3 dB/m at 2 GHz and 0.4 dB/m at 3 GHz.  At lower
frequencies, the attenuation is somewhat lower for horizontal polarization than for vertical, but the
difference disappears above about 1 GHz.  This adds up to a lot of excess path loss if your signal must
penetrate several hundred meters of forest!  Fortunately, there is also significant propagation by
diffraction over the treetops, especially if you can get your antennas up near treetop level or keep them a
good distance from the edge of the forest, so all is not lost if you live near a forest.

General Non-LOS Propagation Models

There are many more general models and empirical techniques for predicting non-LOS path losses, but
the details are beyond the scope of this paper.  Most of them are aimed at  prediction of the paths
between elevated base stations and mobile or portable stations near ground level, and they typically have
restrictions on the frequency range and distances for which they are valid; thus they may be of limited
usefulness in the planning of amateur high-speed digital links.  Nevertheless, they are well worth studying
to gain further insight into the nature of non-LOS propagation.  The details are available in many texts -
Ref. [3] has a particularly good treatment.  One crude, but useful, approximation will be mentioned here:
the loss on many non-LOS paths in urban areas can be modeled quite well by a fourth-power distance
law.  In other words, we substitute d4 for d2 in equation (5).  In equation (6), we can substitute 40log(d)
for the 20log(d) term, which would correspond to the assumption of square-law distance loss for



distances up to 1 km (or 1 mile, for the non-metric version of the equation), and fourth-law loss
thereafter.  This is probably an overly optimistic assumption for heavily built-up areas, but is at least a
useful starting point.

The propagation losses on non-LOS paths can be discouragingly high, particularly in urban areas.
Antenna height becomes a critical factor, and getting your antennas up above rooftop heights will often
spell the difference between success and failure.  Due to the great variability of propagation in cluttered
urban environments, accurate path loss predictions can be difficult.  If a preliminary analysis of the path
indicates that you are at least in the ballpark (say within 10 or 15 dB) of having a usable link, then it will
generally be worthwhile to give it a try and hope to be pleasantly surprised  (but be prepared to be
disappointed!).

Software Tools for Propagation Prediction

Although there is no substitute for experience and acquiring a “feel” for radio propagation, computer
programs can make the job of predicting radio link performance a lot easier.  They are particularly handy
for exploring “what if” scenarios with different paths, antenna heights, etc.  Unfortunately, they also tend
to cost money!  If you’re lucky, you may have access to one of the sophisticated prediction programs
which includes the most complex propagation models, terrain databases, etc.  If not, you can still find
some free software utilities that will make it easier to do some of the calculations discussed above, such
as knife edge diffraction losses.  One very useful freeware program which was developed specifically for
short-range VHF/UHF applications is RFProp, by Colin Seymour, G4NNA.  Check Colin’s Web page at
http://www.users.dircon.co.uk/~netking/freesw.htm for more information and downloading instructions.
This is a Windows (3.1, 95 or NT) program which can calculate path loss in free space and simple
diffraction scenarios.  In addition to calculating knife edge diffraction loss, it provides some correction
factors for estimating the loss caused by more rounded objects, such as hills.  It also allows changing the
distance loss exponent from square-law to fourth-law (or anything else, for that matter) to simulate long
paths with ground reflections or obstructed urban paths.  There is also some provision for estimating the
loss caused when the signals must penetrate buildings.  The program has a graphical user interface in
which the major path parameters can be entered and the result (in terms of receiver SNR margin) seen
immediately.  There is also a tabular output which lists the detailed results along with all of the assumed
parameters.

Special Considerations for Digital Systems

We have previously looked at the effect of multipath on path loss.  When reflections occur from objects
which are very close to the direct path, then paths have very similar lengths and nearly the same time
delay.  Depending on the relative phase shifts of the paths, the signals traversing them at a given
frequency can add constructively to provide a gain with respect to a single path, or destructively to
provide a loss.  On longer paths in particular, the effect is usually a loss.  Since the path lengths are nearly
equal, the loss occurs over a wide frequency range, producing a “flat” fade.

In many cases, however, reflections from objects well away from the direct path can give rise to
significant multipath.  The most common reflectors are buildings and other manmade structures, but many
natural features can also be good reflectors.  In such cases, the propagation delays of the paths from one
end of the link to the other can differ considerably.  The extent of this time spreading of the signal is



commonly measured by a parameter known as the delay spread of the path.  One consequence of having
a larger delay spread is that the reinforcement and cancellation effects will now vary more rapidly with
frequency.  For example, suppose we have two paths with equal attenuation and which differ in length by
300 meters, corresponding to a delay difference of 1 µsec.  In the frequency domain, this link will have
deep nulls at intervals of 1 MHz, with maxima in between.  With a narrowband system, you may be lucky
and be operating at a frequency near a maximum, or you may be unlucky and be near a null, in which case
you lose most of your signal (techniques such as space diversity reception may help, though).  The path
loss in this case is highly frequency-dependent.  On the other hand, a wideband signal which is, say,
several MHz wide, would be subject to only partial cancellation or selective fading.  Depending on the
nature of the signal and how information is encoded into it, it may be quite tolerant of having part of its
energy notched out by the multipath channel.  Tolerance of multipath-induced signal cancellation is one
of the major benefits of spread spectrum transmission techniques.

Longer multipath delay spreads have another consequence where digital signals are concerned, however:
overlap of received data symbols with adjacent symbols, known as intersymbol interference or ISI.
Suppose we try to transmit a 1 Mbps data stream over the two-path multipath channel mentioned above.
Assuming a modulation scheme with 1 µsec symbol length is used, then the signals arriving over the two
paths will be offset by exactly one symbol period.  Each received symbol arriving over the shorter path
will be overlaid by a copy of the previous symbol from the longer path, making it impossible to decode
with standard demodulation techniques.  This problem can be solved by using an adaptive equalizer in the
receiver, but this level of sophistication is not commonly found in amateur or WLAN modems (but it will
certainly become more common as speeds continue to increase).  Another way to attack this problem is
to increase the symbol length while maintaining a high bit rate by using a multicarrier modulation scheme
such as OFDM (Orthogonal Frequency Division Multiplex), but again, such techniques are seldom found
in the wireless modem equipment available to hobbyists.  For unequalized multipath channels, the delay
spread must be much less than the symbol length, or the link performance will suffer greatly.  The effect
of multipath-induced ISI is to establish an irreducible error rate - beyond a certain point, increasing
transmitter power will cause no improvement in BER, since the BER vs Eb/N0 curve has gone flat.  A
common rule of thumb prescribes that the multipath delay spread should be no more than about 10% of
the symbol length.  This will generally keep the irreducible error rate down to the order of 10-3 or less.
Thus, in our two-path example above, a system running at 100K symbols/s or less may work
satisfactorily.  The actual raw BER requirements for a particular system will of course depend on the
error-control coding technique used.

Delay spreads of several microseconds are not uncommon, especially in urban areas.  Mountainous areas
can produce much longer delay spreads, sometimes tens of microseconds.  This spells big trouble for
doing high-speed data transmission in these areas.  The best way to mitigate multipath in these situations
is to use highly directional antennas, preferably at both ends of the link.  The higher the data rate, the
more critical it becomes to use high-gain antennas.  This is one advantage to going higher in frequency.
The delay spread for a given link will usually not exhibit much frequency dependence - for example, there
will be similar amounts of multipath whether you operate at 450 MHz or 2.4 GHz, if you use the same
antenna gain and type.  However, you can get more directivity at the higher frequencies, which often will
result in significantly reduced multipath delay spread and hence lower BER.  It may seem strange that
high-speed WLAN products are often supplied with omnidirectional antennas which do nothing to
combat multipath, but this is because the antennas are intended for indoor use.  The attenuation provided
by the building structure will usually cause a drastic reduction in the amplitude of reflections from outside



the building, as well as from distant areas inside the building.  Delay spreads therefore tend to be much
smaller inside buildings - typically of the order of 0.1 µsec or less.  However, as WLAN products with
data rates of 10 Mbps and beyond are now appearing, even delay spreads of this magnitude are
problematic and must be dealt with by such measures as equalizers, high-level modulation schemes and
sectorized antennas.

Conclusions

Radio propagation is a vast topic, and we’ve only scratched the surface here.  We haven’t considered, for
example, the interesting area of data transmission involving mobile stations - maybe next year! Hopefully,
this paper has provided some insight into the problems and solutions associated with setting up digital
links in the VHF to microwave spectrum.  To sum up, here are a few guidelines and principles:

• Always strive for LOS conditions.  Even with LOS, you must pay attention to details regarding
variability of refractivity, Fresnel zone clearance and avoiding reflections from the ground and other
surfaces.  Non-LOS paths will often lead to disappointment unless they are very short, especially with
the high-speed unlicenced WLAN devices.  Their low ERP limits and high receive signal power
requirements (due to large noise bandwidths, high noise figures and sometimes, significant modem
implementation losses) leave little margin for higher-than-LOS path losses.  Hams are not
encumbered by the low ERP limits, but it can be very expensive to overcome excessive path losses
with higher transmitter powers.

 
• Use as much antenna gain as is practical.  It is always worthwhile to try both polarizations, but

horizontal polarization will often be superior to vertical.  It will generally provide less multipath in
urban areas, and may provide lower path loss in some non-LOS situations (e.g., attenuation from
trees at VHF and lower UHF).  Also, interfering signals from pagers and the like tend to be vertically
polarized, so using the opposite polarization can often provide some protection from them.

 
• There are advantages to going higher in frequency, into the microwave bands, due to the higher

antenna gains which can be achieved.  The tighter focusing of energy which can be achieved may
result in lower overall path loss on LOS paths (providing that you can keep the feedline losses under
control), and less multipath.  Higher frequencies also have smaller Fresnel zones, and thus require less
clearance over obstacles to avoid diffraction losses.  And, of course, the higher bands have more
bandwidth available for high-speed data, and less probability of interference.  However, the advantage
may be lost in non-LOS situations, since diffraction losses, and attenuation from natural objects such
as trees, increase with frequency.

Radio propagation is seldom 100% predictable, and one should never hesitate to experiment.  It’s very
useful, though, to be equipped with enough knowledge to know what techniques to try, and when there is
little probability of success.  This paper was intended to help fill some gaps in that knowledge.  Good
luck with your radio links!
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Appendix

Cable Type 144
MHz

220
MHz

450
MHz

915
MHz

1.2
GHz

2.4
GHz

5.8
GHz

RG-58 6.2
(20.3)

7.4
(24.3)

10.6
(34.8)

16.5
(54.1)

21.1
(69.2)

32.2
(105.6)

51.6
(169.2)

RG-8X 4.7
(15.4)

6.0
(19.7)

8.6
(28.2)

12.8
(42.0)

15.9
(52.8)

23.1
(75.8)

40.9
(134.2)

LMR-240 3.0
(9.8)

3.7
(12.1)

5.3
(17.4)

7.6
(24.9)

9.2
(30.2)

12.9
(42.3)

20.4
(66.9)

RG-213/214 2.8
(9.2)

3.5
(11.5)

5.2
(17.1)

8.0
(26.2)

10.1
(33.1)

15.2
(49.9)

28.6
(93.8)

9913 1.6
(5.2)

1.9
(6.2)

2.8
(9.2)

4.2
(13.8)

5.2
(17.1)

7.7
(25.3)

13.8
(45.3)

LMR-400 1.5
(4.9)

1.8
(5.9)

2.7
(8.9)

3.9
(12.8)

4.8
(15.7)

6.8
(22.3)

10.8
(35.4)

3/8” LDF 1.3
(4.3)

1.6
(5.2)

2.3
(7.5)

3.4
(11.2)

4.2
(13.8)

5.9
(19.4)

8.1
(26.6)

LMR-600 0.96
(3.1)

1.2
(3.9)

1.7
(5.6)

2.5
(8.2)

3.1
(10.2)

4.4
(14.4)

7.3
(23.9)

1/2” LDF 0.85
(2.8)

1.1
(3.6)

1.5
(4.9)

2.2
(7.2)

2.7
(8.9)

3.9
(12.8)

6.6
(21.6)

7/8” LDF 0.46
(1.5)

0.56
(2.1)

0.83
(2.7)

1.2
(3.9)

1.5
(4.9)

2.3
(7.5)

3.8
(12.5)

1 1/4” LDF 0.34
(1.1)

0.42
(1.4)

0.62
(2.0)

0.91
(3.0)

1.1
(3.6)

1.7
(5.6)

2.8
(9.2)

1 5/8” LDF 0.28
(0.92)

0.35
(1.1)

0.52
(1.7)

0.77
(2.5)

0.96
(3.1)

1.4
(4.6)

2.5
(8.2)

Table 1  Attenuation of  Various Transmission Lines in Amateur and ISM Bands in dB/ 100 ft
(dB/ 100 m)

Notes

Attenuation data based on figures from the “Communications Coax Selection Guide” from Times Microwave Systems
(http://www.timesmicrowave.com/products/commercial/selectguide/atten/) and other sources.

The LMR series is manufactured by Times Microwave.  9913 is manufactured by Belden Corp.  RG-series cables are
manufactured by Belden and many others.  The LDF series are foam dielectric, solid corrugated outer conductor cables, best
known by the brand name HELIAX (Andrew Corp.).


