Table of Contents

1. General Information about the RV-M7 .. 4
 1.1. Congratulations! ... 4
 1.2. NOTICE... 4
 1.3. Safety / Warning Information .. 4
 1.4. Safety Training information: ... 4
 1.5. FCC Compliance Information .. 6

2. Overview ... 7
 2.1. Features ... 7

3. Specifications ... 8
 3.1. General .. 8
 3.2. Transmitter .. 8
 3.3. Receiver ... 8
 3.4. User Input and Output Signals .. 8
 3.5. Frequencies .. 9
 3.6. Electrical Inputs and Outputs .. 10
 3.7. LEDs ... 10
 3.8. DC Power .. 10

4. User Serial Port Commands ... 12
 4.1. Overview .. 12
 4.2. Command Mode .. 12
 4.3. Setting a Parameter .. 12
 4.4. Reading a Parameter .. 13
 4.5. CONFIG Button .. 13
 4.6. Exiting the Command Mode .. 14
 4.7. Password Protection .. 14
 4.8. Command Mode Commands ... 15
 4.9. Other non-AT commands .. 16

5. Using the M7 Modem – Packet Mode ... 18
 5.1. Setup ... 18
 5.2. Programming Channels .. 19
 5.3. Data Transmission ... 19
 Serial Port Baud Rate ... 19
 Flow Control .. 19
 Packet Size ... 19
 Key-On_Data ... 20
 Busy-Channel Lock Out .. 20
 5.4. Data Reception .. 20
 5.5. Addressing .. 20
 Addressing Basics .. 20
 Group Numbers ... 21
 Hexadecimal Numbers .. 21
 Setting A System-Wide Address .. 21
 Broadcast Transmissions ... 22
 The Address Mask .. 22
 Addressing Examples: .. 23
 5.6. Error Correction ... 24

6. Installation ... 25
 6.1. Debug Related Commands ... 26

7. M7 Diagnostic Provisions ... 27
 7.1. Overview of Diagnostics ... 27
 7.2. Reading the Diagnostic Information 27
 7.3. Status and Statistics Command .. 27
 7.4. ATST Command .. 29
 7.5. ATST2 Command .. 29
7.6. ATST3 Command ... 30
7.7. ATST4 Command ... 30
7.8. AutoStatus .. 30

8. Appendix A. Serial Port Hardware ... 32
 8.1. Serial Port Data and Handshaking Signals 32
 8.2. Null modem without handshaking 34
 8.3. Compatibility issues ... 34
 8.4. Null modem with full handshaking 35
 8.5. Compatibility issues ... 35

9. Troubleshooting .. 36
 Symptom: Unit will not receive ... 36
 Symptom: Unit will not transmit .. 36
 Symptom: Receive light blinks, but no data is received 36
 Symptom: Long delay before transmitting 37
 Symptom: Cannot enter Command Mode 37
 Symptom: Modem appears dead ... 37

10. Mechanical .. 38
1. **General Information about the RV-M7**

1.1. **Congratulations!**

Congratulations on your purchase of a M7 radio modem – the most advanced radio modem of its kind available today.

Please take a few minutes to read this manual carefully. The information presented here will allow you to derive maximum performance from your radio modem. After reading it, keep the manual handy for quick reference, in case questions arise later on.

1.2. **NOTICE**

Besides the fuse, there are no user-serviceable points inside this transceiver. All service work must be referred to your Authorized Service Center or Raveon Technologies Service Department.

1.3. **Safety / Warning Information**

WARNING - DO NOT operate the RV-M7-VM radio modem when bystanders are within 60cm of the antenna.

Blasting Caps and Blasting Areas

To avoid possible interference with blasting operations, turn off this radio or remove the DC power when you are near electrical blasting caps, in a blasting area, or in areas posted: “Turn off two-way radio.” Obey all signs and instructions.

Potentially Explosive Atmospheres

Turn off your radio prior to entering any area with a potentially explosive atmosphere. Do not install this product for use in areas with potentially explosive atmospheres. Do not remove, install, or charge batteries in such areas. Sparks in a potentially explosive atmosphere can cause an explosion or fire resulting in bodily injury or even death.

Note: The areas with potentially explosive atmospheres referred to above include fueling areas such as below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles, such as grain, dust or metal powders, and any other area where you would normally be advised to turn off your vehicle engine. Areas with potentially explosive atmospheres are often but not always posted.

1.4. **Safety Training Information:**

Antennas used for this transmitter must not exceed an antenna gain of 0 dBd. The radio modem must be used in fixed vehicle-mount configurations or at fixed base-station sites. It is not intended for portable applications.

This radio is restricted to occupational use, work related operations only where the radio operator must have the knowledge to control the exposure conditions of its passengers and bystanders by maintaining the minimum
separation distance of following range. Failure to observe these restrictions may result in exceeding the FCC RF exposure limits.

Antenna Installation:
For rear deck trunk installation, the antenna must be located at least the following range away from rear seat passengers and bystanders in order to comply with the FCC RF exposure requirements.

For model **RV-M7-VM:**

| Radiated frequency and Distance |
| RV-M7-VM 152MHz |
| 60cm |
| FCC ID: SRS-M7-VM |
| Raveon Technologies Corporation |

For vehicular roof top installation, the antenna must be placed in the center of the roof.
1.5. **FCC Compliance Information**

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

NOTE: The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user’s authority to operate the equipment.

This product also complies with FCC Part 95 Subpart J of the FCC rules and regulations.

The Federal Communications Commission (FCC), with its action in ET Docket 93-62, has adopted a safety standard for human exposure to Radio Frequency (RF) electromagnetic energy emitted by FCC-certified equipment. This product meets the uncontrolled environmental limits as stated in OET-65C (01-01) when operated in accordance with the operation guidelines described in this manual. Proper operation of this radio device according to the instructions in this publication will result in user exposure substantially below the FCC recommended limits.

This equipment generates, uses, and radiates radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference. However, there is no guarantee that interference will not occur. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician.
2. Overview

The M7 data radio is a rugged high-performance, high-speed data modem. It contains a receiver, a transmitter, and modem, creating an easy-to-use transparent data radio link. The M7’s user interface is asynchronous RS-232 data into and out of the M7 (CMOS level optional). Modern operation is virtually transparent to the user and the configuration of the modem is via the user serial port.

Unlike any other radio modem on the market, the M7 may be operated in either a “Packetized Mode” or a “Streaming Real-Time Mode”. There are advantages to each approach, and your choice depends upon how your system operates.

For privacy and network versatility, the M7 incorporates a 16 bit identification code. Its protocol also uses a 16bit CRC to guarantee the integrity of the data. Perfect for SCADA and telemetry applications, the M7 can be used for simple point-to-point data communication applications, or for more sophisticated point-to-multipoint, peer-to-peer, or mesh networks.

Although the M7 is the easiest to use modem on the market, its re-programmability makes it extremely versatile. Most parameters within the modem may be re-configured to optimize it for specialized operations, extended range, or higher data throughput.

2.1. Features

- Built-in radio transceiver with integrated modem
- Easy to use. Plug-in, Turn-on, and GO. Transmit data in = Receive data out.
- Lowest current draw in industry.
- Wide input voltage with high-efficiency switching voltage regulator.
- Integrated Packet data protocol and built-in Streaming Real-Time operation.
- ARQ error correction and retransmission capability. Totally transparent to the application.
- Capable of store-and-forward repeating operation.
- Small sized and very rugged extruded enclosure.
- 16 bit addressing for up to 65,525 different unique device addresses per channel
- Supports group and broadcast transmissions. Network mask allows groups of any size.
- 2 watts of RF output. Other RF power levels available upon request.
- Easily configured using “AT” commands
- Very fast Transmit-to-Receive turn around time.
- RS-232 serial input and output. Programmable serial baud rates up to 57600.
- Programmable over-the-air data rates for long-range or high-speed
- Automatic key of transmitter on data.
- RF carrier-detect is not required receiving. No squelch setting required.
- SkyLine and FireLine compatibility mode for use in older Sonik radio systems.
3. Specifications

3.1. General
All measurements made per TIA-603-B
DC input voltage ... 9-16V DC
Size ... 4.60” X 2.60” X .956 (11.7cm X 6.6cm X 2.43cm)
Weight ... 6 ounces (0.17kg)
DC input voltage 10-16V DC
Internal fuse 3A mini blade. Littlefuse part number 0297003 or Raveon part, number 1X726-3
FCC ID Model RV-M7-VMC-N..SRS- M7-VM

3.1. Transmitter
Maximum RF power output ... 2.0 watts
Maximum duty cycle .. 100% at full power up to 40C, 50% to 60C
Maximum transmit frequency deviation ... ± 2.25kHz
Occupied bandwidth .. 11 kHz (12.5kHz channels)
TX spurious outputs .. < -70dBc

3.2. Receiver
Typical RX sensitivity (1% BER)
9600bps, 4-level, 12.5kHz channel .. -106dBm
4800bps, 2-level .. -113dBm
2400bps .. -116dBm
1200 and 800bps .. -118dBm
RX selectivity - ... 50dB
Spurious and image rejection .. -60dB
RX intermodulation rejection ... -60dB at 2400bps
Conducted spurious emissions ... < -30dBm

3.3. User Input and Output Signals
Serial port baud rates.. 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
Voltage levels ... RS-232, RS-422, and RS-485 complaint levels
Modem handshake signals .. RTS, CTS, DTR, DSR, CD
RF I/O .. 50 ohm BNC
Power .. B+ input and Ground
Power Connector .. Phoenix 18 36 18 9 (Raveon P/N 1J165-3)
3.1. **Frequencies**

The RV-M7-VM MURS modem has five user selectable channels. The channel is selected with the **ATHP** command. The RV-M7-VM modem is factory-set to these five channels, and the modem cannot be programmed to operate on any frequency other than these five.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>151.820 MHz</td>
</tr>
<tr>
<td>2</td>
<td>151.880 MHz</td>
</tr>
<tr>
<td>3</td>
<td>151.940 MHz</td>
</tr>
<tr>
<td>4</td>
<td>154.570 MHz</td>
</tr>
<tr>
<td>5</td>
<td>154.600 MHz</td>
</tr>
</tbody>
</table>
3.2. **Electrical Inputs and Outputs**

The front panel of the *M7* modem has these features:

1. RF connector
2. Power LED
3. Status LED (Receive data = green, TX = red)
4. 9-Pin Serial I/O connector
5. DC Power Jack

3.3. **LEDs**

The front LED shows the current status of the radio:

Status LED (TX) This LED blinks red when the transmitter keys and is putting out RF power. It blinks green upon the reception of data or RF carrier.

Power LED (PWR) This LED does a short blink, once every two seconds, indicating to the user that the power to the modem is ON and the modem is working. When the modem is in the command mode, this LED will blink on and off, once per second.

3.4. **DC Power**

DC power for the modem is connected to the 2-pin DC power input jack labeled *DC IN*. Use the supplied cable to connect the DC power. The **red wire is positive (+)** and the **black wire is negative (-)**. Its connection is optional, as the user may alternately apply power to Pin 9 and ground to pin 5 of the 9-pin I/O connector.

The *M7* modem is supplied with a DC power cable, Raveon part number 1C738-1.

Note: The M7 has an internal 3-amp mini-fuse (automotive type) to protect it and its power source against reverse voltage and serious hardware failures. In the event it is blown due to a reverse voltage, it may be replaced by removing the internal circuit board and unplugging the fuse. This must be done by a qualified electronic technician using ESD precautions.
RS-232/EIA232 Serial I/O Connector
The RS-232 9-pin serial I/O connector is a female 9-pin D-subminiature connector having the following pins configuration. It is pinned out so that it may be plugged directly into a computer or PC’s 9-pin COM port.

Front-view of DB-9 connector on modem (female)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Dir</th>
<th>Function</th>
<th>Level / Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CD</td>
<td>out</td>
<td>Carrier detect</td>
<td>If enabled, indicates presence of carrier. Logical 0 (+ voltage on RS-232) means carrier is present. If disabled, it is asserted (0) whenever the modem is operational, and not in the configuration mode. It will be a 1 when the modem is in the configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td>out</td>
<td>Receive data</td>
<td>Data out of the modem.</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>in</td>
<td>Transmit data</td>
<td>Data into the modem.</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>in</td>
<td>Data terminal ready</td>
<td>Normally ignored by the M7 modem. May control the power-state of the modem in low-power mode if this feature is enabled.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
<td>Ground connection</td>
<td>Signal and power ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>out</td>
<td>Data Set Ready</td>
<td>Normally is set to 0 when modem is powered on and running. Modem sets to a 1 when in low-power mode.</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>in</td>
<td>Request to send</td>
<td>Used to stop/start the flow of data coming out of the modem TxD pin. 0 = OK to send, 1 = don’t send. Leave disconnected if not used.</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>out</td>
<td>Clear to send</td>
<td>Used to stop the flow of data going into the RxD pin from the device connected to the M7. 0 = OK to send, 1 = don’t send. If the M7 cannot accept more data, it will negate this signal (set to a 1).</td>
</tr>
<tr>
<td>9</td>
<td>Power</td>
<td>In/out</td>
<td>DC power (not Ring signal)</td>
<td>User may supply the DC power to the modem on this pin.</td>
</tr>
</tbody>
</table>

Note: RS-232 signals use positive and negative voltages to represent digital 1s and 0s. A positive voltage is a 0, and a negative voltage is a digital 1.

This pin-out allows it to be directly plugged into a computer’s 9-pin serial port using a conventional 9-pin RS-232 serial cable. To connect it to a modem, or computer peripheral that has a serial port, you will need a “null-modem” cable. See Appendix A for more information on wiring a null-modem cable.

To configure the M7 modem for RS-232 operation, use the ATIO 0 command. RS-232 is the default operation mode for the connector. RS-485 is a factory option. See the next section for details on the RS-485 option.
4. User Serial Port Commands

4.1. Overview

The serial portion the RF modem is used to send and receive data over the air, as well as to configure the RF modem. In normal operation, the user sends data into the TxD pin of the user port, and this data is transmitted over the air. Received data from another RF modem is output to the user via the RxD pin of the user port. This is the default operating condition of the RF modem. No special characters, hardware control lines, or timing is required to operate the M7 modem.

There is also a "Command Mode" used to program and configure the M7. In the Command Mode, the M7 modem accepts commands via the serial port TxD pin. The commands can be used to change certain internal parameters of the M7 modem as well as to read-out the current configuration and diagnostic statistics.

4.2. Command Mode

The M7 modem may be put into a "Command Mode", by entering a sequence of three plus characters (+++). To keep the M7 modem from unintentionally entering the Command Mode because of the +++ pattern occurring in a stream of data entering the modem, there must be a pause in the data stream before the +++ as well as a pause after the +++ is sent. If either pause is missing, the modem will not enter the command mode.

Using serial communications software such as HyperTerminal, send the 3-character command sequence "+++": while observing times of silence before [BT (Silence Before Sequence) Command] and after [AT (Silence After Sequence) Command] the command characters. The default BT and AT times are 500mS.

The default sequence for entering into AT Command Mode:
1. No characters sent for ½ a second.
2. Input three (3) plus characters ("+++") within ½ of a second.
3. No characters sent for ½ a second.

When the M7 modem first enters the Command Mode, it sends the phrase "M7" out it serial port, and then an "OK" sequence. The "OK" sequence is a sequence of 4 characters:

An "O", "K", <CR>, and <LF> characters (<CR> = ASCII 0D, <LF> = ASCII 0A)

4.3. Setting a Parameter

To set a parameter in the M7 modem, enter the Command Mode as described above. Then enter the proper AT command, a space, the parameter, and then a carriage return. For Example, to set the address of the M7 modem to 1234, enter the following command:

ATDT 1234 <CR>.
Once a Parameter is changed, the modem will begin using the new parameter and the new parameter is saved to non-volatile.

4.4. Reading a Parameter

To read the value of a particular setting, issue the command, with no parameter. The modem will return the value followed by an “OK”. The modem’s OK response is:

- The value in ASCII decimal format.
- A `<CR> <LF>` (ASCII 0D, 0A).

For example, if the user enters the command to read the M7’s modem address and its address was 1234, the user would issue the following command:

```plaintext
ATDT<cr>
```

and the modem will respond with:

```
1234 <CR> <LF> OK <CR> <LF>
```

To get on-line help with a command, enter the command and put a question mark in for the parameter. For example, to see what the ATDT command is for, type `ATDT ?`. The modem will respond by listing a brief description of the command. To see a list of all commands, type `HELP`.

4.5. CONFIG Button

If certain parameters within the modem are modified in a manor that causes the modem to cease functioning or if the user cannot enter the command mode via the “+++” method described above, there is a small push button internal to the M7 modem to assist in this case. This CONFIG button may be pressed at any time, and forces the modem into a known operational state. The CONFIG button is located inside the modem. Remove the rear cover, exposing the two circuit boards. The button is in the center of the lower circuit board as shown below.

The default settings that the modem will revert to when the CONFIG button is pressed are:

1. Serial port 9600 baud, 8 data bits 1 stop, no parity
2. ATCT setting set to 60000 (60 second time-out)
3. Serial port on the front of the unit in RS-232 mode, 9600bps, N/8/1.
If the unit was configured for RS-485, RS-422, or Ethernet, you must disconnect other devices and use an RS-232 device to configure the M7.

Even though the serial baud rate reverts to 9600 baud when the CONFIG button is pressed and the IO port is RS-232, it will revert back to the settings programmed into the M7 modem once the Command Mode is exited.

Note: If the user-interface is password protected, and the Config button on the M7 is pressed, for security reasons, the encryption phrase is automatically erased.

4.6. Exiting the Command Mode

There are three ways to exit the command mode. They are:

1. **ATCN** Issuing the ATCN. The M7 radio will exit the command mode, and begin normal operation.
2. **EXIT** Issuing the EXIT. The M7 radio will exit the command mode, and begin normal operation.
3. **Time Out.** After a pre-set amount of time (60 seconds is the factory default time), the modem will automatically exit the Command Mode, and continue normal operation. Changes will not automatically be saved. This time-out duration may be set with the ATCT command.

4.7. Password Protection

One M7 series products with firmware version C0 or higher, the user interface may be password protected. If it is password protected, the radio will output a “password:” prompt when entering the command mode.

When in the command mode, to enable the use of a password enter:

Password xxxx <CR>

Where xxxx is the 2-7 digit password you would like to protect the user interface with.

To disable password protection, enter:

Password 0 <CR>

Note: If the user-interface is password protected, and the Config button on the M7 is pressed, for security reasons, the encryption phrase is automatically erased.
4.8. **Command Mode Commands**

<table>
<thead>
<tr>
<th>AT Command</th>
<th>Command Description</th>
<th>Parameters</th>
<th>Factory Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Enable/Disable ARQ – When ARQ is enabled, this modem will automatically send an ACK packet back to a modem that sends it data. 0=off, 1=on.</td>
<td>Range: 0 – 1</td>
<td>0 (no AKCs sent)</td>
</tr>
<tr>
<td>BD</td>
<td>Baud Rate – Sets serial COM port baud rate (bps). Over-the-air (throughput) baud rate is set with ATR2 command. If a PC's serial baud rate is set higher than the fixed over-the-air baud rate of the module, hardware handshaking may be required.</td>
<td>Range: 0 – 7 0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400 6 = 57600 7 = 115200</td>
<td>3</td>
</tr>
<tr>
<td>BC</td>
<td>Busy Channel Lock Out – Enable/disable the BCL. If enabled, the modem will not transmit on a radio channel that is busy (has RF on if). 0-OFF, 1=ON.</td>
<td>Range: 0-1</td>
<td>1</td>
</tr>
<tr>
<td>CH</td>
<td>Configure Hardware Flow Control – Enable (1) or disable (0) flow control. When enabled, the modem will monitor the RTS line, and if it is negated, stop sending data out the serial port. If disabled, the modem will ignore the state of RTS, and always send out characters.</td>
<td>1 = Enable 0 = Disable</td>
<td>0</td>
</tr>
<tr>
<td>CN</td>
<td>Exit AT Command Mode – Exits module from AT Command Mode and returns it to Idle Mode. Parameters are not saved in EEPROM.</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>CT</td>
<td>Command Time Out – If no valid commands have been received via the serial port within this time period (in milliseconds), modem returns to normal operation mode from Command mode. If the CONFIG button inside the M7 is pressed, this parameter will be automatically set to 60000.</td>
<td>Range: 100-60000mS</td>
<td>60000</td>
</tr>
<tr>
<td>DT</td>
<td>Destination Address to call – Sets address of the modem to send data to. Note, this parameter is entered in HEX format. Each digit may be a 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,or an F.</td>
<td>Range: 0-FFFF</td>
<td>1234</td>
</tr>
<tr>
<td>E</td>
<td>Echo – Character echo set on (E1) or off (E0). This applies to the Command Mode only.</td>
<td>Range: 0 , 1</td>
<td>0 (no echo)</td>
</tr>
<tr>
<td>F</td>
<td>Display frequencies – Display all of the frequencies programmed into all of the channel memories.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>Channel Number – Select separate channels to minimize interference between multiple sets of modules operating in the same vicinity.</td>
<td>Range: 1 - 6</td>
<td>1</td>
</tr>
<tr>
<td>IC</td>
<td>Read Current Draw – Read the current draw in mA. Accuracy is within 20% of actual current draw.</td>
<td>Range: 0-9999</td>
<td>N/A</td>
</tr>
<tr>
<td>L</td>
<td>Enable/Disable the LEDs – 1 = LEDs always off. This reduces some power consumption. 0 = LED operate normally.</td>
<td>0 or 1</td>
<td>0</td>
</tr>
<tr>
<td>MK</td>
<td>Address Mask – Configures local and global address space. Each digit may be a 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,or F. In most applications, this is kept at FFFF.</td>
<td>Range: 0000 - FFFF</td>
<td>FFFF</td>
</tr>
<tr>
<td>MY</td>
<td>Unit Address – Configures the individual address for this unit. Each digit may be a 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,or F. Note: FF is interpreted as a group. See addressing section.</td>
<td>Range: 0000 - FFFF</td>
<td>1234</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Range/Settings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>Parity – Selects parity format. Settings 0-4 transfer 8-bits over antenna port and generate the parity bit on the RF receiving side.</td>
<td>Range: 0 – 5 0 = none 1 = Odd 2 = Even 3 = Mark (1) 4 = Space (0)</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>Number of Data Bits – Set/read the number of data bits.</td>
<td>Range: 5 - 8</td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td>Stop Bits – Selects the number of stop bits.</td>
<td>Range: 1:2</td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>RF Power Output. Set or show the RF power output setting. Value is in percent, from 0% to 40%. Use and RF wattmeter to confirm the power setting, and adjust the % accordingly to obtain the desired RF power level.</td>
<td>0-40 40</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>Serial Port time out – Number of mS of no activity on the serial port before transmitting the data in its buffer.</td>
<td>Range: 1 - 5000 20 (mS)</td>
<td></td>
</tr>
<tr>
<td>RQ</td>
<td>Receiver Signal Level – Reads the Receiver Signal strength this instant, and returns the level in dBm.</td>
<td>Range: -40 to -130 (dBm)</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>RSSI (Receive Signal Strength Indicator) – Returns the signal level of last received packet. The reading is in dBm. Usable for relative comparison of signals, but absolute value is within10dB at -90dBm.</td>
<td>No parameters. Returns a number -50 to -140 (dBm) varies by model.</td>
<td></td>
</tr>
<tr>
<td>RV</td>
<td>Disable Remote Access – When enabled (set to a 0), the modem will respond to over-the-air RPR requests, Pings, and over-the-air commands. Default is OFF (1).</td>
<td>0 = Remote Access on 1 = Remote Access off</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Serial Number – Reads and returns a unique serial number for this unit.</td>
<td>Read Only 1 - 999999999999</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>Show – Display the configuration of the modem. This will return a page of ASCII characters, showing the main configuration parameters.</td>
<td>None None</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Statistics – Show the unit’s operational statistics. See Statistics section of user manual.</td>
<td>0, 1, 2, 3, 4, or 5 None</td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Transmit Test Data – When issued, the modem will begin transmitting data. The type of data sent is set in the parameter. Entering a <CR> will terminate the transmission.</td>
<td>0 = Go back to normal 1 = Random 2 = Hop up/dn one channel 3 = 1010… at ¼ baud rate 4 = TX all 0s 5 = TX all 1s 6 = Test Points ON 7 = Transmit CW 8 = Transmit 1010101…</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>Read product temperature – Read the internal temperature of the unit’s circuit board in degrees Celsius.</td>
<td>-40 to +99</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Max Packet Size – Set the maximum number of bytes in an over-the-air packet.</td>
<td>1 - 512</td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>Read DC input Voltage– Returns the DC input voltage reading, in mV (12500 = 12.5VDC input).</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>Firmware Version – Returns firmware version currently loaded on the module.</td>
<td>Read Only, 3 characters</td>
<td></td>
</tr>
</tbody>
</table>

** indicates values that are calibrated in the factory and are unit-specific. If the “Radio Type” is changed, these will need to be re-calibrated.

4.9. Other non-AT commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Range/Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
<td>Display the M7’s configuration.</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>MODEL</td>
<td>SHOW</td>
<td>PING</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Read Model number. Read the model number.</td>
<td>Show/display an overview of the radio’s configuration.</td>
<td>Ping another modem. Format is PING xxxx, where xxxx is the ID of the modem to ping. If remote access is enabled on xxxx, it will respond.</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>XXXX</td>
</tr>
</tbody>
</table>
5. Using the M7 Modem – Packet Mode

5.1. Setup

1. Connect a DC power source to the DC IN connection on the front of the modem.

2. Connect a good quality antenna, cut to the operating frequency, to the BNC connector on the front of the modem. Use a good antenna, and place is at high-above obstructions as possible.

3. Connect a computer terminal, or PC computer running HyperTerminal, to the 9-pin I/O connector. The factory default serial ports settings are 9600 bps, 8 data bits, 1 stop, no parity.

4. Program the modem’s operating frequency to your desired operating frequency. This is done with the ATFX xxx.xxxxx command. See the section “Serial Port Commands” for information describing the various parameters that may be modified in the modem. In most applications, the default settings from the factory will work fine.

5. Using the AT commands, change any of the default operating parameters that must be modified. From the factory, the modems are configured and shipped ready-to-use. Out of the box, they will communicate on the default radio channel using the factory defaults. In general, the parameters you may want to modify will be:

 - ATHP x: Channel number to use (1-5).
 - ATMT 0: 0 for normal Packetized operation. Default mode.
 - ATAK 0: 0 for no ARQ, 1 if this unit sends ACKs. Default is no ARQ.
 - ATRB: Set the number of retries if ARQ is used (x). 0 if no ARQ used. Factory default is no ARQ.
 - ATBD: Serial port baud rate
 - ATMY: The ID of this unit. Default is 1234.
 - ATMK: The network address mask. Default is FFFF.
 - ATDT: The address of the unit this modem will talk to. Default is 1234.
 - ATBC: Enable/disable busy channel lock-out.

6. Connect your serial data device to the 9-pin connector on the front of the modem.

The radio is now ready to use. Any serial data going into the modem will be transmitted over the air, and any data received over the air will be sent out the serial port.

Remember, that from the factory, all M7 modems are configured to simply work. Plug in power and connect to the serial port at 9600 baud, and the modems will communicate on the default channel. Change the channel frequency to your specific frequency, and they will be ready to work on your channel.
5.2. **Programming Channels**

1. To change the radio channel, use the `ATHP x` command while the modem is in the command mode.

5.3. **Data Transmission**

To transmit data, send one or more bytes of data into the serial port of the modem. When a full packet of data has been collected into the internal buffer of the modem, or when there is a pause in the data, the modem will automatically key its transmitter, and send the data over the air.

Serial Port Baud Rate

While the modem is transmitting, the user may continue to send more data into the M7. Because the buffers in the M7 are full-duplex, the serial port data rate and the over-the-air data rates are independent. The serial port baud-rates may be set slow to accommodate legacy equipment, or set at high-speed to minimize latency. The over-the-air data rate us usually 4800 baud for narrow-band channels, and 9600 baud for wide-band, although faster or slower rates may be used.

In Packet Mode, selection of the serial port baud-rate is important. As shown above, if the serial port baud-rate is the same as the over-the-air baud rate and the packets are short, the channel utilization is only about 50%. But, if the serial port baud rate is set much higher, say 2-8X the over-the-air rate, the channel utilization becomes near 100%.

Because the M7 can handle serial-port data rate far in excess of the over-the-air rate, the efficiency of the M7 in Packet Mode is approximately the same as other brand modems that cannot operate in a Packet Mode — with the added benefit or ARQ, error-free data, and addressing.

Note that many Windows applications which use the serial port, such as HyperTerminal, put large gaps between the bytes of data they send out the serial port. If an application is not getting the desired throughput, verify that it is not an artifact of the Operating System or the computer.

Flow Control

If large amounts of data will be sent with the M7, it may be possible to overflow the internal data buffer. To ensure the transmit buffer does not overflow, enable and use hardware flow control. Hardware flow control is enabled with the `ATCH 1` command. Note that the M7 modem will always indicate the status of its internal buffer using the CTS signal on the DB-9 serial connector. When CTS is negated, the internal buffers are more than 80% full. When it is asserted and it is “Clear to Send", the buffers are less than 80% full.

Packet Size

The over-the-air packet size may be set with the `ATTT xx` command. Once the modem receives one full packet of data into via the serial port, it will automatically key the transmitter and send the data. Factory default is 80 bytes.
Key-On Data

When serial data is entering the M7's RS-232 port, the M7 looks for pauses in the data as indication that it is time to send a packet of data over the air. The factory default duration of the pause it looks for is 20mS, but the user may change this to over values using the ATR3 xxx command, where xxx is in milliseconds.

Busy-Channel Lock Out

If your system operation requires the M7 modem to monitor-before-transmit, or if you do not want the M7 to transmit on a channel that is busy, you can enable “Busy-Channel-Lockout”, using the ATBC 1 command. ATBC 0 disables BCL, and thus the modem will transmit whenever it has data to send out. The factory-default is BCL disabled. Use caution when enabling it, as a CW interferer, PC with poor shielding, or some other source of RF can stop the modem from transmitting. The threshold where the M7 senses RF carrier, and determines that the channel is busy is set by the ATRA command. This is factory calibrated to an equivalent RF level of approximately -110dBm.

5.4. Data Reception

When the modem receives data over the radio, it checks it for errors, and if it is error-free, it will send it out the serial port. Again, the serial port may be set to any baud rate the user wishes, and the radio receiver and transmitter will continue to operate independently of the baud rate.

When the modem receives a signal, it will assert the CD hardware signal on the RS-232 serial port if it was configured to do so.

In general, the slower the over-the-air data rate, the easier it is for the modem to receive the signal, and thus the more communication range the radio will have. M7 modems have a unique switched-filter along with digital signal processing, that gives them more range at lower data rates.

5.5. Addressing

Addressing Basics

One of the more powerful aspects of the M7 modem is its addressing scheme. Incorporating addressing in the modem allows multiple radio systems on the same frequency to co-exist, and not interfere with each other. Also, some user application cannot tolerate receiving data that was not intended for it, and by setting the addresses in the modems properly, the system can be configured to allow reception of only data intended for the recipient.

If addressing is not needed or desired, it can be turned off so that all modems receive data from all other modems, and all modems can talk to all other modems.

Each M7 contains a 16 bit address, called its Unit Address, and is represented as a 4 digit hexadecimal number. M7 address may be any number between 0000 and FFFF, which are effectively 65,535 different addresses. Every M7 has a Unit
Address programmed into it, as well as the ID of the unit it will send data to. The Unit Address is programmed with the **ATMY xxxx** command, and the Unit Address of the destination modem (the Destination Address) is configured with the **ATDT xxxx** command.

The defaults UNIT ID in all M7 modems is 1234, and 1234 is the default for the destination ID. An Address Mask is used to select which digits of the address will be used to determine if a particular reception was intended for the M7 modem. The default Address Mask is FFFF, which means all digits will be used.

Group Numbers

By default the M7’s Group Number is 0. Group 0 means ignore the group numbering. The Group Number is set with the **ATGP xx** command, where xx is the group number. **ATGP 0** disables group numbering and is the default way the M7 radio modem works. If the Group Number is set to any non-zero number from 1-255, then the group feature is enabled, and the group number will be the group specified in the **ATGP** command. When enabled, the M7 will only communicate with other M7s that have the same Group Number.

Hexadecimal Numbers

For those not familiar with hexadecimal numbers, a hexadecimal digit represents a 4-bit binary pattern. There are 16 possible values (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,and F). These 16 values represent 4 bits of information, thus 4 hexadecimal digits can represent 16 bits of information. The hexadecimal numbers represent 4 bit data in the following way:

Hexadecimal Table

<table>
<thead>
<tr>
<th>Hex #</th>
<th>Binary</th>
<th>Hex #</th>
<th>Binary</th>
<th>Hex #</th>
<th>Binary</th>
<th>Hex #</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>5</td>
<td>0100</td>
<td>8</td>
<td>1000</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>6</td>
<td>0101</td>
<td>9</td>
<td>1001</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>7</td>
<td>0110</td>
<td>A</td>
<td>1010</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>8</td>
<td>0111</td>
<td>B</td>
<td>1011</td>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

When communicating over the air, M7 modems transmit their Unit Address and the Destination Address along with the data. Receiving modems check the received Destination Address, and see if it matches their Unit Address. If it does match, the receiving modem outputs the data it received via its serial port. If it does not match, the receiving modem discards the data, and does not send it out the serial port.

Setting A System-Wide Address

If individual addressing is not needed in your system, there are two ways to ensure it is not used. One way is to set all modems in the system with the same Unit Address and destination address. From the factory, these are both set to 1234, and thus, all modems can communicate with all other modems, using the address 1234. The advantage of using this system-wide address, is that if there are other M7 modems on the channel, but in some other system, they probably will not have the same Unit Address, and thus will not interfere with your system. To reduce the possibility of data cross-talk, the system implementer may wish to
use a different system-wide address for the Unit Address instead of 1234. There are over 65,000 addresses available.

An alternate way to disable addressing completely, is setting the Address Mask to 0000 (ATMK 0000 command). This tells the M7 to ignore the address, and receive every transmission. The disadvantage to this method is the adjacent-system problem. If there is another M7 system on the same channel, all modems with the 0000 mask will receive them also.

Most users who do not use individual modem addressing, choose to set a global system address, and have all modems in their system use the same Unit ID and same destination address.

Broadcast Transmissions

The double FF is used to identify a broadcast packet. A transmission with a two digit FF in the first two positions of the destination ID, or in the last two positions of the destination ID, will be interpreted as a broadcast, and any modem with an ID that matches the two non-FF digits will receive the data. For example, sending data with a destination ID of 12FF will be received by any modem with a unit ID 1200 through 12FF. Sending data with a destination ID of FF34 will be received by any modem with a unit ID of 0034 through FF34.

The Address Mask

The reason to use hexadecimal digits to represent the unit address, is that along with the Unit Address programmed into the M7, there is an “Address Mask” programmed into it. The default mask is FFFF. The address mask is also used to determine if a particular data transmission should be received by the modem. For most applications, where one modem talks to one modem, or where all modems in the system communicate with all other modems in the system, the Address Mask should stay set to FFFF.

Only in systems where some modems should only talk to certain other modems, might you want to change the address mask. Whenever data is received over the air, the Destination Address of the transmission is logically “ANDed” with the Address Mask in the receiving modem. This is the *Effective Destination Address*. The receiving M7 also ANDs its own Unit Address with its Address Mask. The result is the *Effective Unit Address*. The *Effective Unit Address* is compared to the *Effective Destination Address*, and if the two are identical, the data will be received.

Note: Logically 1 AND 1 = 1, 0 AND 0 = 0, 1 AND 0 = 0, 0 AND 1 = 0
One effect of this is that an address mask of 0000 will cause the \textit{M7} modem to receive any data from any unit that transmits. The Destination Address will effectively be ignored if the mask is set to 0000.

\textbf{Addressing Examples:}

Example 1 (default configuration)
- Sending Destination Address = 1234
- Receiving Unit Address = 1234
- Receiving Unit’s Address Mask = FFFF
- Result: Unit will receive the data, because the addresses identically match. When the addresses are identical, the value of the mask is not important.
- Notes: This is the default configuration. All units have address 1234, and all modems will talk to all other modems with address 1234.

Example 2 (a configuration that won’t work)
- Sending to Destination Address = 1236
- Receiving Unit Address = 1234
- Receiving Unit’s Address Mask = FFFF
- Result: No data will be received, because the address do not match, and the address mask of FFFF requires that all digits in the address match.

Example 3 (able to receive a data from a group, 1230 – 123F)
- Sending to Destination Address = 1236
- Receiving \textit{M7} Unit Address = 1234
- Receiving \textit{M7} Address Mask = FFF0
Result: Data will be received. 1236 ANDed with FFF0 is 1230. 1234 ANDed with FFF0 is 1230. The results of the ANDing match, and thus the data will be received.

Example 4 (able to receive from a group, xx34 where xx is any two digits)

- Sending Destination Address = 2234
- Receiving M7's Unit Address = 1234
- Receiving M7's Address Mask = 00FF

Result: Data will be received. 2234 AND 00FF equals 0034. 1234 AND 00FF equals 0034, therefore they match. The results of the ANDing match, and thus the data will be received.

5.6. **Error Correction**

The M7 modem has a built-in error correction mode, commonly referred to as *Automatic Repeat request (ARQ)*. It works by checking each reception for errors, and if the data is OK, it sends a short “ACK” packet back over the air telling the sending station the data was OK.

The M7 modem uses a traditional Carrier Sense Multiple-Access (CSMA) algorithm with randomized re-try time slots to determine when to re-transmit packets that must be re-sent. The duration between re-tries increases as the number of attempts increases.

If received data has an error in it or if the receiving modem does not get the data due to interference, the receiving modem does not send the ACK back, and the sending station will automatically re-send the data. There are two aspects to configuring ARQ:

1) Enable the ARQ mode in the modem to allow it to transmit ACKs (**ATAK 1** command). This command enables the modem to transmit ACK packets.

2) Configure the number of retries the modem should attempt if an ACK packet is not received back when it sends data (**ATRB xx** command). For example, if you set **ATRB** to 5 with the **ATRB 5** command, the modem will wait for an ACK whenever it sends data. If it receives and ACK back from the modem that it sent data to, it will do nothing more. But if it does not receive an ACK, it will resend the same data, trying up to 5 more times.

The factory default condition is not to send or require ACK packets, so if you wish to use this mode, program the M7 to transmit ACKs with the **ATAK 1** command. This will cause the modem to send an ACK anytime it receives data from another modem. Note: If the destination address was a broadcast (FFFF, FFxx, or xxFF), it will not wait for an ACK.

The number of times it retries to send data that does not get through (does not get an ACK) is up to the user, but a number of 5 is usually a good compromise. If after 5 times, the data does not get through, then there probably is something seriously wrong with the channel or system.

The retried-transmissions are randomly spaced at intervals between approximately 200mS and 400mS, increasing by 50mS for each attempted
transmission. Once the modem has sent its data the number of times the user specified in the ATRB xx command, the data is discarded, and the modem will continue to operate as normal.

It is very important that if one modem is configured to send ACK packets (ATAK 1) that all other modems communicating with it are also set to expect ACK packets using the ATRB xx command.

To disable ARQ (the default condition of the modem), disable ARQ with the ATAK 0 and set retries to zero with the ATRB 0 command.

6. Installation

1. Secure the M7 modem using the four mounting holes on the side flanges of the unit.
2. Connect a DC power source to the DC IN connection on the front of the modem. Use the supplied cable, and connect the RED wire to +, and the black wire to – (ground). The black wire and the case of the M7 should be connected to earth ground.
3. Connect a good quality antenna, tuned to the operating frequency, to the RF connector on the front of the modem. Use a good antenna, and place it as high-above obstructions as possible.
4. A separation distance of at least 20 centimeters must be maintained between the transmitter's radiating structures and the body of the user or nearby persons.
5. Connect the computer, terminal, controller, or other hardware device that will be using the M7 modem to its DB-9 serial I/O connector using a shielded cable. Secure it to the M7 with the two mounting screws on the sides of the DB-9 connector.
6. If the antenna is mounted out doors, use a lighting arrestor in-line with the antenna, and properly ground the antenna and the M7 chassis to an earth ground.
6.1. **Debug Related Commands**

Bench Testing

(Must be in command mode to test. Enter +++ at the keyboard to put unit into config/test mode.)

ATTD x
Various transmit test routines.
- 0 = Go back to normal mode. Stops the test.
- 1 = Random data transmit.
- 2 = Hop up/down one channel
- 3 = Force PLL to fast lock mode
- 4 = Transmit all 0s
- 5 = Transmit all 1s
- 6 = Enable the test points on the PCB.
- 7 = Transmit CW on center of channel
- 8 = Transmit preamble (101010 pattern)

SHOW
Display an overview of the configuration.

Ping xxxx
Ping another modem over the air. Transmits a request to xxxx to see if xxxx can hear the sending station. If it does, it answers with a response transmission, containing its ID and the signal strength of the reception.

ATST
Display statistics of how the modem is working.

ATST 1
Display statistics of how the modem’s GPS is working (if installed).

AT$5
Display RSSI. It will scroll the reading until another character comes in the serial port.

Packet Counter

The packet counter mode will output packet count statistics once per minute. It will output the number of packets received in the last minute as well as the running total.

ATPE
Begin counting and displaying the packet counters every minute

ATPE 1
Reset the packet counters back to zero

ATPE 2
Stop counting and displaying packet counters

Upon power up, the packet counter feature is always disabled.
7. M7 Diagnostic Provisions

7.1. Overview of Diagnostics

The M7 radio modem uses a 32-bit microprocessor. Along with handling all aspects of radio modulation and demodulation, the microprocessor also maintains an extensive array of diagnostic information.

This section details the diagnostic information available, and describes how to use the information to optimize or troubleshoot a M7 radio network.

7.2. Reading the Diagnostic Information

M7 diagnostic information is read using AT commands, while the unit is in the Command Mode. Refer to the section “User Serial Port Commands” to learn how to put the M7 modem into the Command Mode.

To see a general overview of how the modem has been operating, use the ATST command (status request command), without any parameter. The radio modem will respond with a list of certain operation statistics that it maintains. All statistics start counting at 0. The ATST 1 command can be used to reset all statistics back to 0, except the run-time timers.

Other operation and configuration statistics are available using the ATST command, with a parameter to specify the desired statistic. The following table describes the various statistics available.

7.3. Status and Statistics Command

<table>
<thead>
<tr>
<th>AT Command</th>
<th>Command Description</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>General Communication Statistics – This command will cause the M7 to output a table of various operational statistics.</td>
<td>Statistics overview screen</td>
</tr>
<tr>
<td>ST1</td>
<td>GPS Statistics – Statistics related to the GPS operation, if installed.</td>
<td>GPS Statistics overview screen</td>
</tr>
<tr>
<td>ST2</td>
<td>Low-level internal statistics – Returns various low-level statistics. These are subject to change in various firmware revisions.</td>
<td>Low-level statistics screen</td>
</tr>
<tr>
<td>ST3</td>
<td>Compile date and time – Returns the data and the time that the firmware was compiled.</td>
<td>Date and time</td>
</tr>
<tr>
<td>ST4</td>
<td>Run Time – Returns the amount of time that the modem has been powered up and running.</td>
<td>Run time display screen</td>
</tr>
<tr>
<td>ST9</td>
<td>Reset all statistics counters</td>
<td>OK</td>
</tr>
</tbody>
</table>
Statistic Read – Returns numeric values, comma separated, of all statistics as described in the ST command.

Run time display screen
7.4. **ATST Command**

The ATST command, will return the following information:

<table>
<thead>
<tr>
<th>STATISTICS</th>
<th>nnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good RX Packets</td>
<td>nnn</td>
</tr>
<tr>
<td>With Bad CRCs</td>
<td>nnn</td>
</tr>
<tr>
<td>With Bad Noise</td>
<td>nnn</td>
</tr>
<tr>
<td>Bytes received</td>
<td>nnn</td>
</tr>
<tr>
<td>Bytes transmitted</td>
<td>nnn</td>
</tr>
<tr>
<td>Packets send</td>
<td>nnn</td>
</tr>
<tr>
<td>ACKs received</td>
<td>nnn</td>
</tr>
<tr>
<td>ACKs transmitted</td>
<td>nnn</td>
</tr>
<tr>
<td>Pkts last minute</td>
<td>nnn</td>
</tr>
<tr>
<td>UART errors</td>
<td>nnn</td>
</tr>
</tbody>
</table>

OK

If there is a hardware problem, there may be one ore more hardware error messages listing the error types (CPU Exceptions, OS Rebooted, or Fatal OS failures). Consult the factory if any of these messages ever appear.

7.5. **ATST2 Command**

The ATST2 command, will return additional lower-level statistics:

RF FIFO overruns	nnn
Wrong address	nnn
Duplicate packets	nnn
Missing ACKs	nnn
TX FIFO overflows	nnn
RX FIFO overflows	nnn
OS loop time	nnn
OS Speed	nnn
VCO Bias	nnn
Config	hhhh

OK
7.6. **ATST3 Command**

The ATST3 command, will return the time and date the firmware in the M7 was compiled.

7.7. **ATST4 Command**

The ATST4 command will return internal timers that tell how long the modem has been powered up and running. All of these timers restart a 0 upon power up.

Run time:
- Years: nnn (number of years running)
- Days : nnn (number of days running, resets to 0 after one year)
- Hours: nnn (number of hours running, resets to 0 after 23 hours, 59 minutes, 59 seconds)
- Min: nnn (number of minutes running, resets to 0 after 59 minutes, 59 seconds)
- Sec: nnn (number of seconds running, resets to 0 after 59 seconds)
- Uptime:nnn (number of seconds running. Does not reset.

OK

7.8. **AutoStatus**

The auto-status feature of the M7 enables it to automatically transmit a packet of status information. By default, this feature is disabled.

To enable the Auto Status feature, use the ATAS xxx command, where xxx is the status interval in minutes. The interval may be between 1 minute and 65000 minutes (45 days).

The general format of the message that the modem will send is:

```
[an ASCII STX character, 02]  
BEGIN STATUS  
ATMY=1234  
ATVR=D1  
ATDT=1234  
ATVB=12300  
UPTIME=120  
OSERR=0  
PRX=1295  
PTX=7933  
[an ASCII ETX character, 03]
```

The first character is a Start of Text character. This is followed by the phrase “BEGIN STATUS”. Each line in the status transmission is terminated with an ASCII carriage return (0D) and line feed (0A).

As new features are added to the M7, there may be new status lines added, but all M7 modems with Revision D or higher firmware support at a minimum, the above shown status parameters. The status transmission will end with an ASCII 0 character, the End of Text character.

The parameters passed in the status message are:

- **ATMY** The ID of the modem sending the status.
- **ATVR** The firmware version in the modem
- **ATDT** The ID the modem is programmed to send data to.
- **ATVB** DC voltage, in millivolts of the DC input to the modem.
- **UPTIME** Number of seconds since this modem has turned on.
- **OSERR** The number of Operating System Errors. Normally this is 0.
- **PRX** The number of packets this modem has received.
PTX The number of packets this modem has transmitted.

The ID code that the status information is sent to, is set with the ATMA xxxx command. Whenever a status transmission is sent, the “TO ID” of the transmission is the address set using the ATMA command. This allows the system to be configured in a way the normal modem communications take place between the modems, and the status information only is delivered to modems that need to receive it.
8. Appendix A. Serial Port Hardware

8.1. Serial Port Data and Handshaking Signals

In computer terminology, the RF modem is considered a “Data Communications Equipment” device, or DCE. The user’s hardware that the modem is connected to is considered “Data Terminal Equipment”, or DTE.

Following is a description of how data and control is communicated over the various serial port signals between the modem (DCE) and another device (DTE) that the modem’s I/O port is connected to.

TxD (INPUT)

This line is used to transmit data from the DTE to the DCE. It is maintained at a logical 1 state when nothing is transmitted. If Hardware Flow Control is enabled in the modem, the terminal will start to transmit data to the modem when a logical 1 is present on all of the following lines:

- Clear To Send (output from modem)
- Request to Send (output from the DTE)

RxD (OUTPUT)

This circuit is used to receive data from the DCE to the DTE. The modem will start to transmit data to the DTE when a logical 1 is present on all of the following lines:

- Data Terminal Ready (reply that it is OK to send)
- Data Set Ready (asserted by the modem)

RTS

On this line, the DTE will send a signal when it wants to receive data from the M7 modem. The M7 modem will not output data unless this pin is low, or “Flow Control” has been disabled in the modem set-up. When a DTE (such as a PC or microcontroller) wants to stop the flow into it, it negates RTS. Negated "Request To Send" (digital 1) means "request NOT to send to me" (stop sending). When the DTE is ready for more bytes it asserts RTS (digital 0) and the flow of bytes to it resumes. DCE equipment works the same way but sends the stop signal out the CTS pin. Thus it's RTS/CTS flow control using 2 lines. The user may turn this feature off or on, using the ATCH command. The default is OFF. To turn it on, issue an ATCH 1 command.

CTS

This signal is an output from the M7, and it indicates the M7’s ability to send more data. If the user tries to send more data into the M7 than the M7 can transmit over the air, it will negate the signal on this pin. The CTS may be asserted when the serial-port data rate is greater to or equal to the over-the-air
rate. For example, if the over-the-air data rate is set to 2400 baud, and the user is send data into the modem at 9600 baud, the modem will negate the CTS signal once the *M7*'s internal data buffers become full.

CD

On this line the modem indicates to the DTE that it has received a carrier from a remote device. It will assert this signal any time there is a carrier detected. The modem may be configured to assert this when an RF carrier is detected (any on-channel RF, voice or data), assert it only when another RF modem signal is detected, or always assert it. The operation of this line is configured with the ATR1 command. The default is 1 (asserts when *M7* data is detected on the radio receiver).

DTR

This line is an input to the *M7*. It is normally ignored because the default configuration of the *M7* modem is to ignore this signal. If the DTR line is enabled for use, using the **ATK5 1** command, the DTR input line can be used to put the *M7* modem into its SLEEP mode. With DTR enabled, anytime the DTR line is a logic 0, the *M7* will be operating normally. With DTR enabled, anytime the DTR line is a logic 1, the *M7* will go into a SLEEP mode, drawing much less DC power.
8.2. **Null modem without handshaking**

Sometimes, a “Null Modem” cable may be required to connect the M7 modem to another device. The specific connections are very dependent upon the type of hardware and handshaking used, but the following sections should help in configuring a null-modem cable.

How to use the handshaking lines in a null modem configuration? The simplest way is to don’t use them at all. In that situation, only the data lines and signal ground are cross connected in the null modem communication cable. All other pins have no connection. An example of such a null modem cable without handshaking can be seen in the figure below.

![Simple null modem without handshaking](image)

<table>
<thead>
<tr>
<th>Connector 1</th>
<th>Connector 2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Rx ↔ Tx</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Tx → Rx</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Signal ground</td>
</tr>
</tbody>
</table>

(DB-9 Female shown. Same wiring for male-to-male cable)

8.3. **Compatibility issues**

There is a problem, if either of the two devices checks the DSR or CD inputs. These signals normally define the ability of the other side to communicate. As they are not connected, their signal level will never go high. This might cause a problem.

The same holds for the RTS/CTS handshaking sequence. If the software on both sides is well structured, the RTS output is set high and then a waiting cycle is started until a ready signal is received on the CTS line. This causes the software to hang because no physical connection is present to either CTS line to make this possible. The only type of communication which is allowed on such a null modem line is data-only traffic on the cross connected Rx/Tx lines.
8.4. **Null modem with full handshaking**

In this null modem cable, seven wires are present. The cable is shown in the following figure.

![Null modem with full handshaking](image)

(DB-9 Female shown. Same wiring for male-to-male cable)

<table>
<thead>
<tr>
<th>Connector 1</th>
<th>Connector 2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Rx ← Tx</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Tx → Rx</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>DTR → DSR</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Signal ground</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>DSR ← DTR</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>RTS → CTS</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>CTS ← RTS</td>
</tr>
</tbody>
</table>

8.5. **Compatibility issues**

The null modem cable with full handshaking does not permit the older way of flow control to take place. The main incompatibility is the cross connection of the **RTS** and **CTS** pins. Originally, these pins are used for a question/answer type of flow control. When the full handshaking null modem cable is used, there is no request anymore. The lines are purely used for telling the other side if communication is possible.

The main advantage of this cable is, that there are two signaling lines in each direction. Both the **RTS** and **DTR** outputs can be used to send flow control information to the other device. This makes it possible to achieve high communication speeds with this type of null modem cable, provided that the system has been designed for it.
9. Troubleshooting

Symptom: Unit will not receive

Solution #1. Verify that the modem is on the correct RF channel. If it is, the RX LED should blink every time another modem tries to transmit to it. If the RX LED does not blink when it should be receiving, it is on the wrong RF frequency.

Solution #2. If the addresses match, and RX LED blinks but still no reception of data, verify that the RTS signal is asserted. The M7 will not output data if the RTS signal on the DB-9 I/O connector is not asserted. If the user’s hardware cannot assert the RTS hardware line, disable hardware flow control in the M7 modem, using the ATCH 0 command.

Solution #3. If the RX LED blinks, verify that the Unit Address of the sending modem matches the unit address of the receiving modem. If this is OK, verify that the over-the-air baud rate of all modems is the same (ATR2 command).

Solution #4. Verify Low Power Mode. The M7 has an optional Low Power Mode (LPM). If LPM is enabled, the M7 will power down whenever the DTR line of the serial port is turned off. The Power LED will blink every 10 seconds in the LPM mode. The ATSM command is used to set or read the Low Power Mode. ATSM 1 enables it, and ATSM 0 disables it. If LPM is used (ATSM 1), then the M7 will turn off when the DTR line is off, or the program connected to the serial port is closed, or the RS-232 connector is unplugged.

Symptom: Unit will not transmit

Solution #1. Verify that CTS is wired. Some devices that could be connected to the M7 will require the CTS signal to be asserted. The M7 does assert this signal, but if the wire is not connected, you device may not be outputting data to the M7. If the TX LED blinks, the M7 is transmitting data. Every time data enters the modem, the TX LED should blink.

Solution #2. Verify that serial port timeout is OK. The ATG0 command sets the number of microseconds that the M7 will look for in the serial input data stream. If a pause greater than this value happens, the modem will transmit. If the ATG0 paramter is set very large, say 2000000, this means 2 seconds, and the modem may simply be waiting a long time.

Solution #3. Verify that the radio channel is clear or BCL is off. The ATBC 1 command enables Busy Channel Lockout. If BCL is on, the modem will not transmit on a busy channel. The ATBC 0 command turns it off, and thus the modem will transmit when it needs to, regardless if the channel is busy. The RX led on the front of the modem is illuminated whenever the radio channel is busy (RF present).

Solution #4. Verify Low Power Mode. The M7 has an optional Low Power Mode (LPM). If LPM is enabled, the M7 will power down whenever the DTR line of the serial port is turned off. The Power LED will blink every 10 seconds in the LPM mode. The ATSM command is used to set or read the Low Power Mode. ATSM 1 enables it, and ATSM 0 disables it. If LPM is used (ATSM 1), then the M7 will turn off when the DTR line is off, or the program connected to the serial port is closed, or the RS-232 connector is unplugged.

Symptom: Receive light blinks, but no data is received

Solution #1. Verify Input/Output Configuration. The M7 has numerous I/O options. RS-232 is standard, but Ethernet, RS485 or RS422 may be configured also. Use the ATIO command to view how the I/O is configured. ATIO 0 is the default (RS-232 mode).

Solution #2. Verify the serial port baud rate. This is difficult if it is set wrong, because you cannot enter the command mode to check it. Try all possible baud rates, and see if one of them works with the modem. Alternately, remove the rear cover of the modem, and press the CONFIG button. This will force the modem into the Command Mode, as well as set the serial port to 9600.
baud, 8 data bits, one stop, and no parity. If the baud-rate was OK, verify the AT, BT and CT times, that they are long enough for you to enter the +++ string.

Symptom: Long delay before transmitting

Solution #1. Verify that serial port timeout is OK. The ATR3 command sets the number of milliseconds that the M7 will look for in the serial input data stream. If a pause greater than this value happens, the modem will transmit. If the ATG0 parameter is set very large, say 2000, this means 2 seconds, and the modem may simply be waiting a long time. Typical settings for this parameter are 20 (20mS).

Symptom: Cannot enter Command Mode

Solution #1. Verify the serial port baud rate. This is difficult if it is set wrong, because you cannot enter the command mode to check it. Try all possible baud rates, and see if one of them works with the modem. Alternately, remove the rear cover of the modem, and press the CONFIG button. This will force the modem into the Command Mode, as well as set the serial port to 9600 baud, 8 data bits, one stop, and no parity. If the baud-rate was OK, verify the AT, BT and CT times, that they are long enough for you to enter the +++ string.

Solution #2. Handshaking. You may have hardware handshaking enabled on your terminal program, but the hardware or cable may not support it. Disable hardware handshaking on your terminal program to verify this is the issue.

Symptom: Modem appears dead.

Solution #1. Verify the power is on. When the modem has good DC power, the PWR LED will blink once per second. If it is not blinking, either the modem does not have power, the modem is broken, or the LEDs have been disabled via the ATL0 command.

Solution #2. Verify the internal fuse OK. There is an internal fuse in the RV-M7, protecting it from reverse-voltage and electrical failures. If the power LED does not blink or come on when DC is applied, check the fuse and replace it with the same type 3-amp mini fuse, and try again. If you replace the fuse, the unit must be carefully check for damage and proper operation before being installed. If you replace the fuse, you must use a Littlefuse brand fuse, part number 0297003 or Raveon part, number 1X726-3 to maintain calibration of your unit.

Solution #3. Verify Low Power Mode. The M7 has an optional Low Power Mode (LPM). If LPM is enabled, the M7 will power down whenever the DTR line of the serial port is turned off. The Power LED will blink once every 10 seconds in the LPM mode. The ATSM command is used to set or read the Low Power Mode. **ATSM 1** enables it, and **ATSM 0** disables it. If LPM is used (**ATSM 1**), then the M7 will turn off when the DTR line is off, or the program connected to the serial port is closed, or the RS-232 connector is un plugged.
10. Mechanical
Limited One Year Warranty

If within one year from date of purchase, this product fails due to a defect in material or workmanship, Raveon Technologies, Incorporated will repair or replace it, at Raveon’s sole discretion. This warranty is extended to the original consumer purchaser only and is not transferable.

This warranty does not apply to: (a) product damage caused by accident, dropping or abuse in handling, acts of God or any negligent use; (b) units which have been subject to unauthorized repair, opened, taken apart or otherwise modified; (c) units not used in accordance with instructions; (d) damages exceeding the cost of the product; (e) batteries; (f) the finish on any portion of the product, such as surface and/or weathering, as this is considered normal wear and tear; (g) transit damage, initial installation costs, removal costs, or reinstallation costs; (h) damage due to lighting, floods, fire, or earthquakes.

RAVEON TECHNOLOGIES INCORPORATED WILL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY IS IN LIEU OF ALL OTHER EXPRESS OR IMPLIED WARRANTIES. ALL IMPLIED WARRANTIES, INCLUDING THE WARRANTY OF MERCHANTABILITY AND THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY MODIFIED TO EXIST ONLY AS CONTAINED IN THIS LIMITED WARRANTY, AND SHALL BE OF THE SAME DURATION AS THE WARRANTY PERIOD STATED ABOVE. SOME STATES DO NOT ALLOW LIMITATIONS ON THE DURATION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

Warranty service is available by mailing postage prepaid to:

Raveon Technologies Corporation
2461 Impala Drive
Carlsbad, CA 92010

To obtain warranty service, include a copy of the original sales receipt or invoice showing the date, location, and price of purchase. Include a written description of the problem with the product, a phone number and name of person who may be contacted regarding the problem, and the address to where the product should be returned.

Products repaired under warranty will typically have their program memories erased and reset to factory default settings.